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Abstract. We present a study of the sensitivity of the International Linear Collider (ILC) to electroweak
parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have
been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory con-
text we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion
matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multi-dimensional
parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such
as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a simi-
lar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings.
Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively de-
termine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector,
conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel.

PACS. 11.30.Qc; 12.39.Fe; 12.60.Fr; 13.66.Jn

1 Introduction

Uncovering the mechanism of electroweak symmetry
breaking (EWSB) is a central issue for the next gener-
ation of particle colliders, the LHC and the ILC. The
previous generation of precision experiments, in particular
data from LEP and SLC, have established the descrip-
tion of electroweak interactions as a spontaneously broken
gauge theory, but the underlying physics that triggers
the formation of a scalar (Higgs) condensate and thus
breaks the electroweak SU(2)L×U(1)Y symmetry is still
unknown. All possible scenarios necessarily involve yet un-
seen degrees of freedom and their interactions. They range
from purely weakly interacting models, such as the min-
imal standard model (SM) with a light Higgs boson and
its supersymmetric generalizations (e.g., the MSSM), to
strongly interacting settings that could indicate the open-
ing-up of further gauge sectors or extra dimensions [1–5].
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In any case, the Higgs condensate induces masses and
longitudinal polarization components for the weak gauge
bosons W+,W−, and Z. Therefore, a precise study of
weak-boson interactions is a nontrivial measurement of
parameters that are related to the unknown symmetry-
breaking sector.
It may happen that this new physics involves reso-

nances in the elastic scattering of vector bosons and, in
analogy with the form factors of QCD, in the form fac-
tors of vector-boson production. As a special case, the
SM Higgs boson is a scalar resonance in the V V → V V
(V =W,Z) elastic scattering amplitude (below the physi-
cal region if the Higgs is light). Other possible resonances
include vector or tensor states. Alternatively, the weak-
boson scattering amplitudes and form factors might be
featureless while saturating the unitarity limit at high
energies.
Narrow resonances such as the MSSM Higgs may be

understood as elementary particles. The renormalizabil-
ity of some weakly interacting models supports this view
and allows us to extrapolate the theory up to very high
scales and small distances such as the Planck scale, before
any four-dimensional field-theoretic understanding breaks
down. On the other hand, if resonances are broad, and
if in the absence of light Higgs states renormalizability is
lost, the distinction between elementary and composite



354 M. Beyer et al.: Determination of new electroweak parameters at the ILC – sensitivity to new physics

states is meaningless. For instance, the underlying theory
may be a QCD-like confining gauge theory like techni-
color [6–13], extended and walking technicolor [14–31],
topcolor [32–41], a little Higgs model [42–45], decon-
structed dimensions [46, 47] or an extra-dimensional Higgs-
less theory with Kaluza–Klein towers of vector reso-
nances [48–50]. A phenomenological analysis of elec-
troweak symmetry breaking should therefore account for
all of these possibilities.
This can be done in a model-dependent way by predict-

ing observables within some definite framework and com-
paring with the data. In weakly interacting models where
precision calculations are possible, this is straightforward.
Unfortunately, if the EWSBmechanism involves strong in-
teractions, our current knowledge is far too limited to do
this. In minimal technicolor as the classic strong-interac-
tion theory [6–13], the QCD analogy has been exploited
to predict some vector-boson interactions, only to rule
out the simplest class of models by a detailed compari-
son with the LEP data. While there are many ways to
overcome these constraints, the possibility to accomo-
date data in qualitatively different models is usually paid
for by a loss of predictivity. Since we cannot discard the
scenario of strong electroweak symmetry breaking alto-
gether, the accumulation of more data in a new energy
range is the only path to a significant improvement in our
understanding.
Nevertheless, a phenomenological approach should be

able, at least, to give quantitative information on the sensi-
tivity of new collider experiments, even if nothing is known
or assumed about the underlying theory. This is possi-
ble, and results are often expressed in terms of limits on
‘new-physics’ scales Λ. Unfortunately, the meaning of such
a scale is rather unclear, since it usually depends on ar-
bitrary normalization factors in effective operators. Fur-
thermore, our experimental understanding of the signa-
tures and analysis possibilities at the next generation of
colliders, LHC and ILC (for a recent overview see [51]),
so far did not allow us to accomplish this task in full
generality.
In the present paper we present a new analysis of elec-

troweak observables at the ILC that, together with previ-
ous results from LEP/SLC, should complete the picture.
(For a related work on the sensitivity of LEP, cf. [52]; we
expect that similar results will become available soon for
the LHC environment [4, 5, 53] and thus enable us to ex-
ploit the LHC/ILC complementarity [54].) We express the
results on weak-boson interactions in a generic effective-
theory language and transform this into transparent sen-
sitivity estimates by rephrasing results in terms of would-
be resonance mass parameters [55, 56]. This allows for
a unique and precise definition of the accessible scale Λ in
each distinct interaction channel that does not depend on
arbitrary operator normalizations.

1.1 Weak-boson interactions at colliders

At high-energy colliders there are several processes that
probe the electroweak symmetry-breaking sector. Vector-

boson form factors are accessible in single and double pro-
duction of electroweak gauge bosons. In a more direct
way, we can address the mechanism of symmetry break-
ing by measuring the quasi-elastic scattering of vector
bosons that are radiated from incoming fermions. This
is supplemented by data on triple vector-boson produc-
tion in fermion annihilation [57–60]. Furthermore, new
degrees of freedom in the symmetry-breaking sector can
directly interact with fermions or manifest themselves in
four-fermion interactions via “oblique” corrections to the
gauge-boson propagators.
New effects in fermion-pair production, i.e., contact in-

teractions and oblique corrections, are already constrained
by the combination of low-energy data with the Z-peak
results of LEP I and SLC. The current status of these meas-
urements is summarized in [61]. Since the LEP II collider
did produce on-shell W+W− pairs, we also have experi-
mental constraints on the low-energy tail of W form fac-
tors, encoded in the set of triple gauge couplings (TGC).
The quality of all these data will greatly improve at fu-

ture colliders. The higher energy that is probed in the cur-
rent Tevatron run and later at the LHC gives a much better
lever arm on four-fermion data, and we also expect a more
precise TGC determination [62, 63]. Further significant im-
provements in accuracy are foreseen for the ILC [64]. If this
machine is run on the Z peak again (GigaZ option), it will
replace the existing data on oblique corrections. We give
a brief account of this in Sect. 4.
A measurement of quasi-elastic vector boson scatter-

ing is clearly the most direct probe of the Higgs mech-
anism. Without the Higgs boson the amplitude matrix of
this class of processes saturates the tree-unitarity bound at
1.2 TeV [65–67]. With a Higgs boson, unitarity is restored
(for heavy Higgs bosons see [68–71]). Actually measuring
this has been considered since the planning of the SSC.
For a phenomenological description, we have to distin-

guish two complementary approaches. In the high-energy
range much beyond 1 TeV that would have been covered
by the SSC if it had been built, unitarity saturation in-
validates any low-energy expansions, so the processes are
described by arbitrary amplitude functions. There is no
way to find a finite set of parameters that accounts for all
possibilities. To simplify the discussion, previous studies
therefore concentrated on a small set of reference models,
e.g., a single scalar or vector resonance, and estimated the
perspective of observing them in data.
With less energy being available at the LHC, the pro-

spects for discovering, e.g., resonances in the high-energy
range is clearly worse [72–75]. However, low-energy expan-
sions become more appropriate, and thus we have a well-
defined framework of interpreting future data in terms of
few parameters. This is even more true for the current
ILC proposal. There, the high e+e− luminosity and the
clean environment allow for precision analyses, but the
c.m. energy is limited to 500–1000GeV. This does not
reach into the energy range where perturbative unitar-
ity becomes an issue. However, measurements are foreseen
to be rather precise and lead us to the unambiguous pa-
rameter determinations that we describe in the current
paper.
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1.2 The layout of the paper

In this paper we present a new, improved estimate of the
ILC sensitivity to the amplitudes of quasi-elastic vector-
boson scattering, using both triple vector-boson produc-
tion and vector-boson scattering as complementary pro-
cesses. We describe the analyses and results in Sects. 5
(triple weak-boson production) and 6 (weak-boson scatter-
ing). Other experimental constraints are briefly reviewed
in Sect. 4. As one should expect, the results are expressed
in terms of sensitivity ranges for a set of low-energy param-
eters, the anomalous couplings α4,5,6,7,10. The necessary
definitions are collected in Sect. 2. In the simulation and
numerical analysis of scattering processes, we put particu-
lar emphasis on model independence, so we do not assume
custodial symmetry, and we refrain from calculational sim-
plifications such as the effective W approximation or the
Goldstone equivalence theorem that have proven numer-
ically unreliable.
In Sect. 3, we discuss resonances and their relation

to the measurable low-energy parameters. As mentioned
above, this is not because resonances have to be present
in weak-boson scattering, but the idea is to give an un-
ambiguous meaning to the notion of a sensitivity reach in
terms of a scale Λ. This language is then used for the in-
terpretation of our numerical results, as given in Sect. 7.
If resonances turn out to be actually present, and accessi-
ble at LHC, this way of interpreting the data furthermore
allows for a straightforward relation of high-energy and
low-energy measurements as they can be provided by the
combination of LHC and ILC.

2 Anomalous couplings
and the chiral lagrangian

Below the energy range where new degrees of freedom be-
come visible or non-perturbative models have to be used,
electroweak interactions are described in terms of an effect-
ive field theory: the chiral Lagrangian [76–79]. The par-
ticular formulation of this Lagrangian in terms of elemen-
tary fields is not unique, but any two different formulations
are related by reparameterizations that do not affect the S
matrix. The physical results depend just on the symmetries
and on the content of asymptotic fields, i.e., the known
particles.
The amplitudes derived from this Lagrangian are or-

ganized in a perturbative expansion in powers of 1/(4πv),
where v is the electroweak scale, set by the Fermi constant
as v = (

√
2GF)

−1/2 = 246GeV. To be precise, the pertur-
bative series involves the parameters g and g′ (the elec-
troweak couplings) and E/(4πv), where E is some combi-
nation of the typical process energies and external-particle
masses [80–82].
The lowest order in this expansion gives rise to an exact

low-energy theorem [83, 84] for the amplitudes of weak-
boson scattering, that depends only on the known value of
the electroweak scale v. The next-to-leading order (NLO)
introduces transversally polarized gauge bosons, one-loop

corrections, and a set of new parameters that govern the
second order in the energy expansion, known as anoma-
lous couplings. These encode information on the unknown
physics that we are interested in. While higher orders (two-
loop corrections, one-loop effects of anomalous couplings,
and further new free parameters) are interesting as well,
the limited precision of actual experiments lets us truncate
the series at NLO. In some cases, higher-order effects may
be important, however.
As mentioned before, any such an effective-field theory

description is limited in scope. It fails at the threshold of
the first resonance, e.g., a Higgs boson or a (“techni-ρ”)
vector resonance. However, this can always be remedied
by coupling such resonances in a generic way, introducing
their coupling constants as free parameters. The frame-
work thus retains its generality beyond the threshold.
A more important limitation comes from the fact that, in
the absence of a SM-like Higgs boson, scattering ampli-
tudes of vector bosons saturate the unitarity bound at high
energy, such that a perturbative expansion is no longer
possible. Naively, we would expect this bound to be at
E = 4πv = 3 TeV, but a more precise estimate [65–67] sets
this scale at E = 1.2 TeV if all anomalous couplings vanish.
The formal setup of the electroweak chiral Lagrangian

is well known and has been described in several papers and
textbooks [76–79,85–87]. In order to introduce the frame-
work and notation for the later sections, we list the relevant
definitions and relations here.
In a generic gauge, the degrees of freedom consist of the

usual fermions, the gauge bosons W 1,W 2,W 3, B (in the
gauge basis) orW+,W−, Z,A (in the physical basis), and
the scalar Goldstone bosons w+, w−, z that, after symme-
try breaking, provide the longitudinal polarization states
of the massive gauge bosons. Without oblique corrections,
the relation of the gauge and physical bases is given by

W 1 = 1√
2
(W++W−) , W 3 = cWZ+ sWA , (1a)

W 2 = i√
2
(W+−W−) , B =−sWZ+ cWA , (1b)

where sW and cW are the sine and cosine of the Weinberg
angle, respectively. Contracting the W field with Pauli

matrices, W =W k τ
k

2 , we introduce the field strength
tensors

Wµν = ∂µWν−∂νWµ+ig[Wµ,Wν ], (2)

Bµν =Σ (∂µBν −∂νBµ)
τ3

2
Σ† . (3)

The Goldstone bosonsw ≡ wkτk are labeled analogously,

w1 = 1√
2
(w++w−) , w2 = i√

2
(w+−w−) , w3 = z ,

(4)

and enter only via the Goldstone (or Higgs) field matrix,

Σ = exp

(
−
i

v
w

)
. (5)
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The covariant derivative of the Higgs field is

DΣ = ∂Σ+ igWΣ− ig′Σ

(
B
τ3

2

)
, (6)

where the gauge couplings, again in the absence of anoma-
lous couplings, are given by their usual definitions g =
e/sW and g

′ = e/cW.
It is customary to introduce further related fields that

allow us to write all terms in the Lagrangian in amanifestly
SU(2)L gauge-invariant way. These are

V =Σ(DΣ)† =−(DΣ)Σ† , T=Στ3Σ† . (7)

All expressions may be much simplified by adopting the
unitarity gauge where w ≡ 0. In this gauge, the latter two
fields reduce to

V⇒−
ig

2

[
√
2(W+τ++W−τ−)+

1

cW
Zτ3
]
, T⇒ τ3

(8)

i.e., the vector field V is composed of those components of
the gauge fields that acquire masses. T projects onto the
electrically neutral component; in particular, in unitarity
gauge we have tr {TV}=− ig

cW
Z.

However, there are good reasons to retain the gauge-
invariant form of the Lagrangian. In particular, at high en-
ergies the leading behavior of vector boson scattering am-
plitudes is related to Goldstone scattering amplitudes [88–
92], so we may consider the opposite limit and omit the
gauge fields while keeping only the Goldstone bosons in the
Lagrangian. In this case, we obtain

V =
i

v

(
∂wk+

1

v
εijkwi∂wj

)
τk+O(v−3) , (9)

T= τ3+2
√
2
i

v

(
w+τ+−w−τ−

)
+O(v−2) . (10)

The bosonic part of the lowest-order chiral Lagrangian
reads

L0 =−
1

2
tr {WµνW

µν}−
1

2
tr {BµνB

µν}

−
v2

4
tr {VµV

µ}+β1L
′
0+
∑
i

αiLi (11)

At NLO, we have to include anomalous couplings. The
purely bosonic, C and CP -invariant interactions that ap-
pear are [76–79]

L′0 =
v2

4 tr {TVµ} tr {TV
µ} , (12a)

L1 = gg
′ tr {BµνW

µν} , (12b)

L2 = ig
′ tr {Bµν [V

µ,Vν ]} , (12c)

L3 = ig tr {Wµν [V
µ,Vν ]} , (12d)

L4 = (tr {VµVν})
2
, (12e)

L5 = (tr {VµV
µ})2 , (12f)

L6 = tr {VµVν} tr {TV
µ} tr {TVν} , (12g)

L7 = tr {VµV
µ} (tr {TVν})

2
, (12h)

L8 =
1
4g
2 (tr {TWµν})

2
, (12i)

L9 =
1
2 ig tr {TWµν} tr {T[V

µ,Vν ]} , (12j)

L10 =
1
2 (tr {TVµ})

2 (tr {TVν})
2
. (12k)

In this list, there are three operators (L′0,L1,L8) that
affect gauge-boson propagators directly (oblique correc-
tions). Three additional operators (L2,L3,L9) contribute
to anomalous TGCs. The remaining five operators (L4–L7
and L10) induce anomalous quartic couplings only.
The parameter β1 plays a special role since it multiplies

a dimension-2 operator. It is a well-established experimen-
tal fact that this quantity, related to the ∆ρ parameter,
is small, so the leading-order effective Lagrangian exhibits
an “isospin” symmetry. By definition, this symmetry for-
bids operators that contain T factors and thus treat W
and Z in an asymmetric way. At NLO, the symmetry is
broken by g sin θW �= 0 and by the up–down differences
in fermion masses and couplings, so it can at best be an
approximate symmetry. We could simplify the anomalous
couplings by assuming isospin conservation to all orders
and thus eliminate the operators L6–L10 altogether, but
apart from the single observation that ∆ρ≈ 0 there is no
compelling reason for this. Therefore, we will not make this
assumption.
In addition to these standard dimension-2 and dimen-

sion-4 operators, we introduce a restricted set of dimen-
sion-6 operators:

Lλ1 = i
g3

3M2W
tr {WµνWν

ρWρµ} , (13a)

Lλ2 = i
g2g′

M2W
tr {BµνWν

ρWρµ} , (13b)

Lλ3 =
g2

M2W
tr {[Vµ,Vν ]Wν

ρWρµ} , (13c)

Lλ4 =
g2

M2W
tr {[Vµ,Vν ]Bν

ρWρµ} , (13d)

Lλ5 =
gg′

2M2W
tr {T[Vµ,Vν ]} tr {TWν

ρWρµ} ,

(13e)

with dimensionless coefficients αλ1–α
λ
5 . The first two oper-

ators induce further anomalous TGCs, while all five con-
tribute anomalous quartic couplings. Although these oper-
ators are formally of higher dimension, we will see below
that they occur at the same order in the expansion as the
previous operators.

3 Resonances in the TeV range

We are interested in mapping the interactions of weak
bosons in the energy range where EWSB physics becomes
important, roughly E � 1 TeV up to several TeV. This
would be straightforward for a multi-TeV collider with suf-
ficient luminosity. Unfortunately, no such collider will be
available soon, and even the VLHC and CLIC projects ful-
fil the requirements only partially.
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Therefore, for the time being we can expect few signals
of this kind of physics. These might be striking resonances,
such that their event rates overcompensate the low parton
rates of LHC at high momentum. Otherwise, we can carry
out indirect measurements that access just the gross prop-
erties of the actual amplitudes. For these, we should specify
to which energy range they are actually sensitive.
Clearly, indirect data will be most sensitive to the

low-energy rise of amplitudes, and there is an energy
limit beyond which no variation can possibly be detected.
A straightforward and rather generic way to formulate
this is to place a resonance at that energy and check
whether its low-energy effect is visible. This can be done
independently for each charge (weak isospin) and spin
channel.
A resonance in a given scattering channel has two pa-

rameters, the mass M and the coupling to this channel.
If we are just interested in the sensitivity reach, we have
to get rid of the arbitrariness in the coupling. To this
end, we first note that the total resonance width does
not exceed the mass – otherwise the notion of a reson-
ance is meaningless. To be more specific, we can introduce
the ratio of width and mass as a parameter, f ≡ Γ/M .
Since the low-energy effect of the tree-level resonance ex-
change is proportional to f2, the ultimate sensitivity of
a low-energy measurement can be associated with the po-
ssible maximum f ≈ 1, i.e., a resonance that is as wide
as heavy. While narrower states have a pronounced ef-
fect if produced on-shell, they do less influence the low-
energy range. Actually, a resonance with f = 1 looks like
a broad continuum that saturates unitarity in the energy
range E ≈M .
We therefore define the sensitivity limit Λ of a low-

energy measurement as given by a resonance with mass
M = Λ for which tree-level exchange would induce a 1σ
shift in the fit, compared to some assumed central value.
The resonance coupling is set such that the width is equal
to the mass (precisely: Γ = fM , where we consider f ≤ 1),
assuming that there are no other decay channels. This
definition ensures that a real resonance with mass M = Λ
may have a smaller, but never a larger effect on the consid-
ered low-energy observable. In other words, the observable
is insensitive to anything in the high-energy amplitude be-
yond E = Λ.
Looking at resonances that couple to vector boson

pairs, we can limit ourselves to spin J = 0, 1, 2 and isospin
I = 0, 1, 2, since these are the possible quantum numbers
of a pair of spin-1, mixed-isospin (1/0) bosons. If isospin
was conserved exactly, the only accessible (I, J) combi-
nations would be (0, 0), (0, 2), (2, 0), and (1, 1). However,
isospin is broken by the B gauge boson (hypercharge) and
by the fermion couplings; therefore, we should not rely on
isospin conservation. Still, there is one combination that
we can leave out, (I, J) = (2, 1), since due to the Landau–
Yang theorem an isospin-2 vector state does not couple
to W+W+ or W−W− pairs and is thus indistinguishable
from a vector with mixed I = 1/0.
Along with the couplings to vector bosons, for all states

considered here, we evaluate the partial width for the de-
cay into a vector boson pair. If the resonance is sufficiently

heavy (this is the case for any state that is not directly
accessible at the ILC), due to the Goldstone-boson equiva-
lence theorem this width is well approximated by the par-
tial width for the decay into two (unphysical) Goldstone
bosons. This gives us a lower limit ΓV V for the total res-
onance width Γ . From the upper limit on the total width,
Γ ≈M , we can infer an upper bound for the resonance
coupling, and thus for the scattering amplitude itself. In-
tegrating out the resonance gives rise to a shift in the
low-energy scattering amplitude, which is therefore also
bounded in magnitude. In the end, these bounds have to
be compared with the achievable accuracy in the determin-
ation of the low-energy parameters.
The method for integrating out heavy states and

thus obtaining their low-energy (tree-level) effects is well
known. Given a Lagrangian that contains quadratic and
linear terms for the resonance Φ,

LΦ =
z

2

[
Φ(M2+A)Φ+2ΦJ

]
, (14)

where A and J involve light fields and (covariant) deriva-
tives, the tree-level low-energy expansion is

LeffΦ =−
z

2M2
JJ +

z

2M4
JAJ +O(M−6) . (15)

In an actual calculation, this expression is typically manip-
ulated further in order to relate the resulting operators to
the canonical basis as defined in Sect. 2.
We do not consider loop corrections due to resonance

exchange, since after proper renormalization they gener-
ically do not alter the results at the order we are con-
sidering. However, in cases where a symmetry forbids the
linear coupling to J , and thus the effect is zero in our
framework, the loop contribution is actually the leading
one, although suppressed by powers of 1/16π2 and 1/M2.
This happens, for instance, for the supersymmetric part-
ners in the MSSM. Furthermore, we should keep in mind
that in technicolor theories there are non-decoupling loop
corrections (which originate from the massless, confined
technicolor partons) that have a rather strong impact on
the anomalous couplings that we consider. The shifts in the
oblique corrections due to this effect have been used to rule
out some of the simplest models. However, it is generally
assumed that in the theories considered nowadays these
corrections are rather small.
In any case, in the present paper we do not intend

to actually predict the values of anomalous couplings in
certain models. Instead, by relating the possible shifts in
low-energy observables (anomalous couplings) to the high-
energy behavior of physical scattering amplitudes (reso-
nances) we want to estimate the physics reach of pre-
cision measurements and express it in terms of dimen-
sionful parameters Λ (resonance masses) in a meaningful
way.

3.1 Scalar resonances

Scalar resonances are of particular interest since the most
prominent representative, a I = 0 scalar boson, serves
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as a Higgs boson if its couplings take particular values.
In extended models with Higgs bosons, there are also
scalar resonances with higher isospin. For instance, in
the MSSM the (H+,H0,H−) triplet can be viewed as
an I = 1 triplet. As another example, the littlest Higgs
model [42–45] contains a complex triplet (φ++, φ+, φ0),
which under isospin decomposes into a real I = 2 quintet
and a singlet.
After the elimination of Goldstone bosons in unitarity

gauge, scalars do not mix with vector bosons, so at tree
level, the low-energy effects of a heavy scalar resonance
are confined to four-boson couplings, i.e., the parameters
α4,5,6,7,10. This is easily verified for the explicit represen-
tations considered here. We should keep in mind, how-
ever, that a resonance or an equivalent contribution in the
I = J = 0 channel (i.e., a Higgs boson) provides a (par-
tial) cutoff for the logarithmic divergences in the chiral
Lagrangian and thus sets the renormalization point for the
anomalous couplings. In this sense, the parameters α1–α5
contain a logarithmic dependence lnM/(16π2) on this res-
onance mass. However, after taking this renormalization
into account, the residual mass dependence due to one-loop
diagrams is of order 1/(16π2M2) and thus subleading com-
pared to the tree-level contributions that are listed below.

3.1.1 Scalar singlet: σ

This state is the generalization of a Higgs resonance. It has
two independent linear couplings, gσ and hσ. The latter
violates isospin. (In the following, we always adopt a no-
tation where g couplings conserve isospin, while h and k
couplings violate it by one and two units, respectively.)
Neglecting self-couplings etc. that do not contribute to the
order we are interested in, the Lagrangian is

Lσ =−
1

2

[
σ
(
M2σ+∂

2
)
σ+2σj

]
, (16)

where

j =−
gσv

2
tr {VµV

µ}−
hσv

2
(tr {TVµ})

2
. (17)

The Higgs boson corresponds to the special values gσ = 1
and hσ = 0. Given the fact that we can freely add bilinear
and higher (self-) couplings, the minimal standard model
emerges as a special case of the chiral Lagrangian coupled
to a scalar resonance. It should be emphasized that this is
an exact equivalence: a simple non-linear transformation of
the scalar fields, that does not affect the S matrix, trans-
forms Lσ into the SM Lagrangian in its usual form.
Integrating out σ, we obtain the values of the anoma-

lous couplings β1 and αi. We get zero values for β1 and all
parameters that involve field strengths, and

α4 = 0 , α6 = 0 , (18a)

α5 = g
2
σ

(
v2

8M2σ

)
, α7 = 2gσhσ

(
v2

8M2σ

)
, (18b)

α10 = 2h
2
σ

(
v2

8M2σ

)
. (18c)

In the high-mass limit, the σ width is given by

Γσ =
g2σ+

1
2 (gσ+2hσ)

2

16π

(
M3σ
v2

)
. (19)

This includes σ→W+W− and σ→ ZZ.
Scalar resonances may couple to SM fermions. The cou-

plings need not follow the pattern of SM Higgs couplings
that are proportional to the fermion masses. Altogether,
the linear couplings of a scalar σ to SM particles take the
general form

L=−σ(jV + jf ) , (20)

where jV ∼ vVµV µ is the bosonic current (17). The fermio-
nic current has the structure

jf =
(
gQQLΣQR+ g��LΣ�R+hQQLΣTQR

+h��LΣT�R+h.c.
)
+ gLν �

c

LΣ
∗P+Σ�L+ g

R
ν �
c

RP+�R ,

with P± ≡
1±σ3

2 . The Σ factors make the interaction
terms formally SU(2)-invariant. (We are assuming baryon-
number conservation.)
Integrating out the heavy singlet σ results in the cur-

rent–current interactions:

−
1

2M2σ
{jV jV +2jV jf + jf jf} . (21)

The first term is the purely bosonic one considered above.
The third term is a generic four-fermion contact interac-
tion, while the second one is a dimension-5 operator coup-
ling two EW gauge bosons and two fermions. This term
should be detectable in dedicated high-precision analyses
at ILC, but it is essentially unconstrained by the existing
data.
Four-fermion operators mediated by scalar resonances

have been discussed (in the context of fermion composite-
ness) in [93]. The most severe limits discussed there come
from atomic parity-violation experiments. However, they
are applicable only if CP is violated, and they disappear
for the case of a purely scalar or purely pseudoscalar res-
onance. Limits from precision measurements at LEP or
Tevatron are generically of the order of Λ> 200–500GeV.

3.1.2 Scalar triplet: π

If isospin is conserved, this multiplet does not have any
couplings to vector boson pairs, and instead of a resonance
we might rather expect pair production as the dominant
phenomenological effect. Furthermore, technipions in tech-
nicolor models, as a typical realization of isospin-1 scalars,
are actually pseudoscalars and, at first glance, do not have
linear couplings at all. However, in our treatment the logic
is opposite: we assume an effect to be present and express it
in terms of would-be resonance parameters. Therefore, we
consider the I = 1 triplet in the resonance mode.
Writing the field as

π = πaτa ≡
√
2(π+τ++π−τ−)+π0τ3 , (22)
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the Lagrangian is

Lπ =−
1

4
tr
{
π
(
M2π+D

2
)
π+2πj

}
, (23)

with

j=
hπv

2
Vµ tr {TV

µ}+
h′πv

2
T tr {VµV

µ}

+
kπv

2
T (tr {TVµ})

2
. (24)

Evaluating the effective Lagrangian, the non-vanishing pa-
rameters are

α4 = 0 , (25a)

α5 = 2h
′ 2
π

(
v2

16M2π

)
, (25b)

α6 = h
2
π

(
v2

16M2π

)
, (25c)

α7 = 2h
′
π(hπ+2kπ)

(
v2

16M2π

)
, (25d)

α10 = 4kπ(hπ+kπ)

(
v2

16M2π

)
. (25e)

The partial widths for the decay into vector boson pairs are
different for charged and neutral pions:

Γπ± =
1
4h
2
π

16π

(
M3π
v2

)
, (26a)

Γπ0 =
h′ 2π +

1
2 (hπ+h

′
π+2kπ)

2

16π

(
M3π
v2

)
. (26b)

If there is approximate isospin conservation we expect the
total widths to be dominated by fermion pairs and by
three-boson decays, analogous to the pions of QCD.
The fermionic couplings of a triplet scalar involve the

current

jaf = g
±
QQLτ

aP±QR+ g
±
� �Lτ

aP±�R+h.c. (27)

Note that Majorana terms are not possible in the triplet
case. Integrating out the heavy triplet scalar leads to simi-
lar fermion-coupling results as for the singlet σ.

3.1.3 Scalar quintet: φ

With the notation τxy ≡ τx⊗ τy, we expand an isospin-2
scalar as

φ=
√
2
(
φ++τ+++φ−−τ−−

)
+
1
√
2

[
φ+(τ+3+ τ3+)+φ−(τ−3+ τ3−)

]

+
1
√
3
φ0(τ33− τ+−− τ−+) . (28)

The Lagrangian takes the form

Lφ =−
1

4
tr
{
φ
(
M2φ+D

2
)
φ+2φj

}
, (29)

with

j=−
gφv

2
Vµ⊗V

µ−
hφv

4
(T⊗Vµ+Vµ⊗T) tr {TV

µ}

−
h′φv

2
T⊗T tr{VµV

µ}−
kφv

2
T⊗T (tr {TVµ})

2
.

(30)

We derive the non-vanishing parameters

α4 = g
2
φ

(
v2

16M2φ

)
, (31a)

α5 = 4h
′ 2
φ

(
v2

16M2φ

)
, (31b)

α6 = hφ(2gφ+hφ)

(
v2

16M2φ

)
, (31c)

α7 = 2h
′
φ(gφ+2hφ+4kφ)

(
v2

16M2φ

)
, (31d)

α10 =
(
h2φ+4kφ(gφ+2hφ+2kφ)

)( v2

16M2φ

)
,

(31e)

and the following expressions for the resonance widths:

Γφ±± =
g2φ
64π

(
M3φ
v2

)
, (32a)

Γφ± =
(gφ+hφ)

2

64π

(
M3φ
v2

)
, (32b)

Γφ0 =

(
gφ−4h′φ

)2
+2
(
gφ+2hφ+2h

′
φ+4kφ

)2
3 ·64π

×

(
M3φ

v2

)
. (32c)

For the scalar quintet (with doubly-charged compo-
nents) no universal coupling to a pair of SM fermions is po-
ssible. These occur only for the projection onto the singly
charged and neutral components.

3.2 Vector resonances

Vector resonances play an important role in the analysis
of weak-boson scattering. QCD-like technicolor and the so-
called BESS models [94–96] predict a strong vector reson-
ance ρTC analogous to the ρmeson resonance in pion–pion
scattering. Vector resonances are also present in extended
gauge theories, where they are usually called Z ′,W ′. The
low-energy effect of such states involves all anomalous cou-
plings in the effective Lagrangian.
There are various possibilities for coupling a vector res-

onance ρ to gauge fields. The couplings can be organized in
powers of 1/M2. Let us discuss a triplet vector resonance ρ
(with isospin conservation) for concreteness, the discussion
of singlet resonances and isospin violation is analogous.



360 M. Beyer et al.: Determination of new electroweak parameters at the ILC – sensitivity to new physics

The bosonic part of the Lagrangian may contain the
operators

v2 tr {ρµV
µ} , tr {ρµνW

µν} , tr {ρµVνW
µν} ,

(33)

if expanded up to dimension 4. At dimension 6 there is an
important additional term,

tr {ρµνW
ρµWρ

ν} . (34)

We follow the convention that in couplings with pos-
itive mass dimension (except for the resonance masses
themselves) we extract explicit factors of v, not M . Actu-
ally, there is a redundancy associated to the weak-boson
equation of motion,

0 =−
1

g
DνW

µν − jµf − i
v2

4
Vµ (35)

that allows us to eliminate one of the three vector-res-
onance couplings [97], and that justifies the extraction of
the dimensional parameter v2 if all dimensionless couplings
are to have identical scaling properties. We use this redun-
dancy to eliminate the kinetic mixing term, tr {ρµνWµν}.
This condition also fixes the direct coupling of the vector
resonance to the fermionic current jµf .
The fermionic coupling clearly has an impact on pre-

cision data. Let us now focus on the case of an isospin
singlet vector ωµ (equivalent to a Z

′ resonance). In con-
trast to scalars, a vector current couples multiplets of
like chirality, so we do not need extra factors of Σ for
a gauge-invariant interaction. We allow for isospin break-
ing and decompose the currents into their up- and down-
type components:

L= ωµj
µ
f , (36)

with

jµf = g
±
Q,LQLγ

µP±QL+ g
±
Q,RQRγ

µP±QR

+ g±�,L�Lγ
µP±�L+ g

±
�,R�Rγ

µP±�R . (37)

Integrating out the heavy vector resonance (here it is
sufficient to take the lowest order), one gets

1

2M2ω

(
jV,µj

µ
V +2jf,µj

µ
V + jf,µj

µ
f

)
. (38)

The second term is a redefinition of the fermionic cur-
rents of the SM that can be attributed to the mixing of
the new resonance with the SM Z boson. In the vector-
singlet case indicated here, this leads to non-universal
Z-fermion couplings since the current of the vector reson-
ance is not necessarily proportional to the SM hypercharge
current. A vector-triplet resonance couples proportional to
the SM isospin current and thus preserves universality, but
its presence changes the meaning of the Fermi constant,
which is defined by the vector-triplet exchange interaction
in muon decay. The third term is a four-fermion contact in-
teraction, analogous to the scalar-resonance case, but with
different helicity structure.

3.2.1 Vector singlet: ω

The Lagrangian is

Lω =−
1

4
ωµνω

µν +
M2ω
2
ωµω

µ+ i
hωv

2

2
ωµ tr {TV

µ}

+
gv2kω

2M2ω
ωµtr {[T,Vν ]W

νµ}

+ i
�ω

M2ω
ωµν tr {TW

ν
ρW

ρµ} (39)

and can be rewritten by partial integration:

Lω =
1

2

[
ωµ
(
(M2+∂2)gµν −∂ν∂µ

)
ων +2ωµj

µ
]
, (40)

with

jµ = i
hωv

2

2
tr {TVµ}+

gv2kω

2M2ω
tr {[T,Vν ]Wνµ}

+ i
2�ω
M2ω
∂ν tr {TW

ν
ρW

ρ
µ} . (41)

Expanding up to second order and expressing the result in
the canonical operator basis, we obtain the coefficients

β1 = h
2
ω

v2

2M2ω
, (42)

α1 = h
2
ω

(
v2

2M2ω

)2
, (43a)

α2 = h
2
ω

(
v2

2M2ω

)2
, (43b)

α3 = hωkω

(
v2

2M2ω

)2
, (43c)

α4 = h
2
ω

(
v2

2M2ω

)2
, (43d)

α5 =−h
2
ω

(
v2

2M2ω

)2
, (43e)

α6 =−h
2
ω

(
v2

2M2ω

)2
, (43f)

α7 = h
2
ω

(
v2

2M2ω

)2
, (43g)

α8 =−h
2
ω

(
v2

2M2ω

)2
, (43h)

α9 =−hω(hω+kω)

(
v2

2M2ω

)2
, (43i)

α10 = 0 , (43j)
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and

αλ1 =−hω�ω

(
v2

2M2ω

)2
, (44a)

αλ2 = hω�ω

(
v2

2M2ω

)2
, (44b)

αλ3 = α
λ
4 = 0 , (44c)

αλ5 = hω�ω

(
v2

2M2ω

)2
. (44d)

The ω boson can decay intoW+W− but not into ZZ, and
the pair decay width is

Γω =
h2ω+

1
2�
2
ω

48π
Mω . (45)

Note that, at leading order in v2/M2, the kω coupling
does not enter the width formula. This interaction involves
a longitudinal and a transversal gauge boson, which in the
limit v
M is forbidden as an on-shell ωµ decay mode. We
could thus interpret this term as a continuum property, not
related to the resonance, and allow for large values of kω
(since theΓ ≤M constraint is irrelevant). However, looking
at the equations of motion, consistent scaling requires kω to
be of the same order as the other dimensionless couplings.

3.2.2 Vector triplet: ρ

The vector triplet is written as

ρµ = ρ
a
µτ
a =
√
2
(
ρ+µ τ

++ρ−µ τ
−
)
+ρ0µτ

3 . (46)

We write the generic Lagrangian up to order 1/M2 that
includes isospin-violating effects and anomalous magnetic
moments:

Lρ =−
1

8
tr {ρµνρ

µν}+
M2ρ
4
tr {ρµρ

µ}

+
∆M2ρ

8
(tr {Tρµ})

2

+ i
µρ

2
g tr {ρµW

µνρν}+ i
µ′ρ
2
g′ tr {ρµB

µνρν}

+ i
gρv

2

2
tr {ρµV

µ}+ i
hρv

2

2
tr {ρµT} tr {TV

µ}

+
g′v2kρ

2M2ρ
tr {ρµ[B

νµ,Vν ]}

+
gv2k′ρ
4M2ρ

tr {ρµ[T,Vν ]} tr {TW
νµ}

+
gv2k′′ρ

4M2ρ
tr {Tρµ} tr {[T,Vν ]W

νµ}

+ i
�ρ

M2ρ
tr {ρµνW

ν
ρW

ρµ}

+ i
�′ρ
M2ρ
tr {ρµνB

ν
ρW

ρµ}

+ i
�′′ρ

M2ρ
tr {ρµνT} tr {TW

ν
ρW

ρµ} . (47)

For the moment, we omit the mass splitting term. Then,
partial integration transforms the Lagrangian into

Lρ =
1

4
tr
{
ρµ
(
M2ρg

µν+D2gµν −DνDµ+2iµρgW
µν

+2iµ′ρg
′Bµν

)
ρν+2ρµj

µ
}
, (48)

where

jµ = igρv
2Vµ+ ig

′
ρv
2T tr {TVµ}

+
g′v2kρ

M2ρ
[Bνµ,V

ν ]+
gv2k′ρ
2M2ρ

[T,Vν ] tr {TWνµ}

+
gv2k′′ρ

2M2ρ
T tr {[T,Vν ]Wνµ}+ i

4�ρ
M2ρ
Dν (W

ν
ρW

ρµ)

+ i
4�′ρ
M2ρ
Dν(B

ν
ρW

ρµ)+ i
4�′′ρ
M2ρ
Dν (T tr {TW

ν
ρW

ρµ}) .

(49)

In reducing the effective Lagrangian, we use the fact that
the operators

tr {WµνW
µν} , tr {BµνB

µν} , tr {VµV
µ} (50)

can be dropped because they occur in the zeroth-order part
of the chiral Lagrangian. These operators renormalize the
measured values of g, g′, and v with respect to their bare
values which are unknown anyway. Finally, we add the ef-
fect of the mass splitting ∆M2 to get the parameters

β1 = 4hρ(gρ+hρ)
v2

2M2ρ
− (gρ+2hρ)

2
v2∆M2ρ

2M4ρ
(51)

and

α1 = (gρ+2hρ)
2

(
v2

2M2ρ

)2
, (52a)

α2 =
[
−gρ
(
gρ(1−µ

′
ρ)+2kρ

)
+4h2ρ

]( v2
2M2ρ

)2
,

(52b)

α3 = (gρ+2hρ)
[
gρ (1+µρ)+k

′′
ρ

]( v2
2M2ρ

)2
, (52c)

α4 = (gρ−2hρ)
2

(
v2

2M2ρ

)2
, (52d)

α5 =−(gρ−2hρ)
2

(
v2

2M2ρ

)2
, (52e)

α6 = 8gρhρ

(
v2

2M2ρ

)2
, (52f)

α7 =−8gρhρ

(
v2

2M2ρ

)2
, (52g)

α8 =−4hρ(gρ+hρ)

(
v2

2M2ρ

)2
, (52h)

α9 =−
[(
2hρ+k

′′
ρ

)
(gρ+2hρ)

+2hρ
(
k′ρ+ gρµρ

)]( v2
2M2ρ

)2
(52i)

α10 = 0 . (52j)
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The λ-type couplings are

αλ1 =−
[
(gρ+2hρ)

(
�ρ+2�

′′
ρ

)
+2gρ�ρ

]( v2
2M2ρ

)2
,

(53a)

αλ2 =

[
(gρ+2hρ)

(
�ρ+2�

′′
ρ

)
−
cW

sW
gρ�
′
ρ

](
v2

2M2ρ

)2
,

(53b)

αλ3 =−(gρ+2hρ)�ρ

(
v2

2M2ρ

)2
, (53c)

αλ4 =−
cW

sW
(gρ+2hρ)�

′
ρ

(
v2

2M2ρ

)2
, (53d)

αλ5 =−(gρ−2hρ)�
′′
ρ

(
v2

2M2ρ

)2
. (53e)

We note that β1 (related to the ∆ρ or ∆T parame-
ters) is of order v2/M2ρ , while the other coefficients are
all of order v4/M4ρ . Experimentally, β1 is known to be
small. Usually, one draws the conclusion that hρ ≈ 0, i.e.,
vector resonance interactions conserve isospin. The above
formulas show that there are other possibilities, however.
We could have hρ = −gρ, which corresponds to a pseudo-
symmetric case where the components of the ρ triplet
couple with alternating sign. Incidentally, in this case α8
(the ∆U parameter) also vanishes, but the quartic cou-
plings α4 to α7 are significantly enhanced. Furthermore, we
cannot exclude a cancellation, e.g., due to a non-vanishing
isospin splitting.
A charged ρ resonance can decay intoW±Z andW±γ:

Γρ±→W±Z =
(gρ+2hρ)

2+2
(
cW�ρ+

1
2sW�

′
ρ

)2
48π

Mρ ,

(54a)

Γρ±→W±γ =
2
(
sW�ρ−

1
2cW�

′
ρ

)2
48π

Mρ . (54b)

For the neutral ρ, the Landau–Yang theorem forbids ZZ
and γγ final states. The total widths are

Γρ± =
(gρ+2hρ)

2+2�2ρ+
1
2�
′ 2
ρ

48π
Mρ , (55a)

Γρ0 =
(gρ−2hρ)2+2(�ρ+2�′′ρ)

2

48π
Mρ . (55b)

Again the operators with the k coefficients do not
change the formula for the width of the heavy vector res-
onance at the order we are considering because a helicity
flip is needed, which is proportional to the masses of the
electroweak gauge bosons.

3.3 Tensor resonances

A massive tensor field fµν is subject to the conditions

fµν = fνµ , fµµ = 0 ∂µf
µν = ∂νf

µν = 0 . (56)

Its spin sum is given by

∑
λ

ε∗λ
µνερσλ =

1

2
(PµρP νσ+PµσP νρ)−

1

3
(PµνP ρσ) ,

(57)

where

Pµν(k) = gµν −
kµkν

M2
. (58)

The free Lagrangian is

Lf = Lkin−
M2

2
fµνf

µν , (59)

where we do not need the explicit form of the kinetic part
as long as we are just interested in the leading-order effect-
ive Lagrangian.
In the sequel, we discuss couplings of tensor resonances

to fermions. Heavy tensor resonances beyond the EWSB
scale have been introduced in the context of extra dimen-
sions as Kaluza–Klein recurrences of the graviton. These
particles usually couple to the energy-momentum tensor
of ordinary matter, which may serve as a guideline for the
construction of the current here. Since we are only inter-
ested in the low-energy effective theory, after integrating
out the heavy tensor we remain with an interaction of two
conserved currents. Hence, we are allowed to omit terms
proportional to a derivative or a metric due to the transver-
sality and tracelessness of the tensor resonance. Therefore,
dimension-4 couplings to fermions are not possible. This
is because one needs two Lorentz indices which have to be
symmetric, ruling out σµν couplings. Therefore, the lowest-
order term in the current contains a derivative and is of
dimension 5. Furthermore, since the γ matrix flips the chi-
rality, a Majorana coupling at dimension 5 is not possible.
We have

L= fµνj
µν
f with

jf,µν =
1

Λ

∑
a=L/R

∑
ψ

g±ψ,a

2
ψa

(
γµ
↔
∂ ν +γν

↔
∂ µ

)
P±ψa .

(60)

Here Λ is the cutoff scale. Integrating out the tensor reson-
ance yields a dimension-8 contact interaction. Due to the
presence of the derivatives this operator is only relevant
phenomenologically for the heaviest SM fermions, so that
no stringent bounds exist for these terms. Note that the
usual bounds on tensor interactions concern the antisym-
metric tensor (magnetic moment-like operators).

3.3.1 Tensor singlet: f

Including interactions, we write the Lagrangian for a neu-
tral tensor field fµν :

Lf = Lkin−
M2f

2
fµνf

µν +fµνj
µν , (61)
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where jµν is a traceless symmetric tensor current:

jµν =−
gfv

2

(
tr {VµVν}−

gµν

4
tr {VρV

ρ}
)

−
hfv

2

(
tr {TVµ} tr {TVν}−

gµν

4
(tr {TVρ})

2
)
.

(62)

Expanding the effective Lagrangian to leading order, we
obtain the non-vanishing parameters

α4 = g
2
f

(
v2

8M2f

)
, α6 = 2gfhf

(
v2

8M2f

)
, (63a)

α5 =−
g2f
4

(
v2

8M2f

)
, α7 =−

gfhf

2

(
v2

8M2f

)
,

(63b)

α10 =
3

2
h2f

(
v2

8M2f

)
. (63c)

Similar to scalar resonances, at leading order no anoma-
lous bilinear or trilinear couplings are generated by tensor
exchange.
The decay width of a tensor field can be evaluated using

the spin sum as introduced above. We obtain

Γf =
g2f +

1
2 (gf +2hf)

2

16π

(
M3

30v2

)
, (64)

where the two terms in the numerator correspond to the
f →W+W− and f → ZZ decays, respectively.

3.3.2 Tensor triplet: a

A triplet tensor field can be written as

aµν =
√
2
(
a+µντ

++a−µντ
−
)
+a0µντ

3 . (65)

The Lagrangian is

La = Lkin−
M2a
4
tr {aµνa

µν}+
1

2
tr {aµνj

µν} , (66)

where

jµν =−
hav

4

(
Vµ tr {TVν}+Vν tr {TVµ}

−
gµν

2
Vρ tr {TV

ρ}
)

−
h′av

2
T
(
tr {VµVν}−

gµν

4
tr {VρV

ρ}
)

−
kav

2
T
(
tr {TVµ} tr {TVν}−

gµν

4
(tr {TVρ})

2
)
.

(67)

We obtain for the electroweak parameters

α4 = h
′ 2
a

(
v2

8M2a

)
, (68a)

α5 =−
h′ 2a
4

(
v2

8M2a

)
, (68b)

α6 =
1

4

(
1

2
h2a+4h

′
a(ha+2ka)

)(
v2

8M2a

)
, (68c)

α7 =
1

4

(
h2a−h

′
a(ha+2ka)

)( v2
8M2a

)
, (68d)

α10 =
3

2
ka(ha+ka)

(
v2

8M2a

)
, (68e)

and for the widths

Γa± =
h2a
64π

(
M3a
30v2

)
, (69a)

Γa0 =
h′ 2a +

1
2 (ha+h

′
a+2ka)

2

16π

(
M3a
30v2

)
. (69b)

3.3.3 Tensor quintet: t

This is analogous to the scalar quintet φ:

tµν =
√
2
(
t++µν τ

+++ t−−µν τ
−−
)

+
1
√
2

[
t+µν(τ

+3+ τ3+)+ t−µν(τ
−3+ τ3−)

]

+
1
√
3
t0µν(τ

33− τ+−− τ−+) . (70)

The Lagrangian is

Lt = Lkin−
M2t
4
tr {tµνt

µν}+
1

2
tr {tµνj

µν} , (71)

where

jµν =−
gtv

2

[
1

2
(Vµ⊗Vν +Vν⊗Vµ)−

gµν

4
Vρ⊗V

ρ

]

−
htv

2

[
1

4
(T⊗Vµ+Vµ⊗T) tr {TVν}

+
1

4
(T⊗Vν+Vν⊗T) tr {TVµ}

−
gµν

8
(T⊗Vρ+Vρ⊗T) tr {TV

ρ}

]

−
h′tv

2
T⊗T

[
tr {VµVν}−

gµν

4
tr {VρV

ρ}

]

−
ktv

2
T⊗T [tr {TVµ} tr {TVν}

−
gµν

4
(tr {TVρ})

2

]
. (72)

The parameters are

α4 =

(
1

4
g2t +4h

′2
t

)(
v2

16M2t

)
, (73a)

α5 =

(
1

2
g2t −h

′ 2
t

)(
v2

16M2t

)
, (73b)
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α6 =

(
1

2
ht

(
gt+
1

2
ht

)
+4h′t

(
1

2
gt+ht+2kt

))

×

(
v2

16M2t

)
(73c)

α7 =

(
ht

(
gt+

1

2
ht

)
−h′t

(
1

2
gt+ht+2kt

))(
v2

16M2t

)
,

(73d)

α10 = 3

(
1

4
h2t +kt(gt+2ht+2kt)

)(
v2

16M2t

)
. (73e)

The widths are

Γt±± =
g2t
64π

(
M3t
30v2

)
, (74a)

Γt± =
(gt+ht)

2

64π

(
M3t
30v2

)
, (74b)

Γt0 =
1

3

(gt−4h′t)
2+2 (gt+2ht+2h

′
t+4kt)

2

64π

(
M3t
30v2

)
.

(74c)

3.4 Relating observables to resonance parameters

As illustrated by the above results, the leading effect of
scalar and tensor exchange on the anomalous couplings αi
is of the order g2v2/(16M2), where g is any of the couplings
introduced in the various Lagrangians. For each resonance,
the total width is limited by the requirement Γtot �M ,
while it is bounded from below by the partial widths that
scale like

Γ ∼
g2

16π

M3

kgv2
, (75)

with some numerical factor kg. Combining this informa-
tion, we get an upper limit for the coupling strength, and
hence for the anomalous quartic couplings, which is of the
order

g2 � 16πkg
v2

M2
⇒ |αi|� 4πki

(
v2

M2

)2
. (76)

The numerical coefficients kg, ki depend on the resonance
channel and on the type of coupling and can be read off from
the relations given in the previous sections. For a scalar, k is
of order one, while for a tensor, a typical value is k = 30.
To be at all sensitive to a given resonance mass M

(i.e., to the behavior of the amplitude in the energy range
E ∼M), the experimental accuracy on the parameter αi
has to be at least as good as required by (76). Furthermore,
the presence of radiative corrections and the necessity of
counterterms imply an inherent uncertainty on the anoma-
lous couplings,

∆αi ∼ 1/16π
2 , (77)

so that the effect of the resonance dominates only if

M � 4πv 4
√
ki/π . (78)

As a result, the reach of low-energy measurements as an
indirect model-independent determination of the high-
energy amplitude behavior will not exceed the energy
range E ∼M with M given by (78), even under favorable
circumstances.
Naively, for a vector resonance the situation looks bet-

ter, since its width scales only withM , compared toM3 for
scalar and tensor states. However, the results of Sect. 3.2
clearly show that, with the exception of β1, all anomalous
couplings receive corrections only at order v4/M4, so com-
bining this with the bound on the coupling set by Γtot �M ,
we again arrive at the conclusion (76). In short, in the ab-
sence of fermionic couplings, β1 – i.e., the ρ parameter – is
the only parameter that is sensitive to resonances, and thus
to the high-energy behavior of electroweak amplitudes, at
order v2/M2.
One should keep in mind that fermionic interactions

may play a significant role. If a resonance with mass M
couples to a fermionic current jf , the effective Lagrangian
contains a contact interaction 1

M2
j2f , a dimension-6 op-

erator, that scales with 1/M2. Limits on contact terms
are therefore potentially more sensitive to new phenom-
ena than bosonic interactions (with the exception of the ρ
parameter).
If both fermionic and bosonic currents couple to the

resonance, there are interactions of type 1
M2
jf jV that also

scale with 1/M2. These terms shift the effective oblique
parameters S, T , U [98, 99] (which are usually defined
in the absence of fermionic currents) and modify vector-
boson pair production on top of the usual triple gauge cou-
plings. For this reason, the measurement of vector-boson
pair production, in particular at the ILC, is very sensitive
to a high-mass QCD-like techni-ρ resonance. The QCD ρ
meson does have, in our operator basis, a sizable fermion-
pair coupling.
However, in the present paper we are mainly concerned

with adding independent information via the observation
of quartic vector-boson interactions. For this reason, we
will assume below that fermionic couplings do not play
a role. The concrete analyses described in the following
sections thus ignore fermion currents, and the scaling prop-
erties of purely bosonic operators do apply.

4 LEP observables and ILC prospects

4.1 Oblique corrections

The radiative corrections to the masses and couplings of
the gauge bosons can be largely absorbed into three pa-
rameters, where several, basically equivalent, parameteri-
zations are used. The relation of the S, T , U parameteriza-
tion [98–101] and the coupling constants of the effective
Lagrangian are given in Appendix A.1. The observables
that enter in the determination of S, T , and U have al-
ready been measured with good precision at LEP, SLD and
at the Tevatron [102, 103]. T is given by the normalization
of the Zff̄ vertex, ∆ρ, and it is thus obtained from the
partial widths of the Z decaying into fermions. The asym-
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metries at LEP and SLD, which are the quantities that are
measured with the best precision, can all be expressed in
terms of an effective weak mixing angle sin2 θeff which is
given by a linear combination of S and T . The third in-
dependent observable that enters the determination of S,
T , and U is the W -mass which is measured at LEP II and
at the Tevatron. It is given by a linear combination of all
three parameters. In many models no deviation of U from
the standard model (defined as the Higgs-less electroweak
theory with zero anomalous couplings) is expected so that
often U is fixed to its SM value. Since the W -mass de-
pends differently on S and T than sin2 θeff, the inclusion
of the W mass in this case shrinks the error of S and T
significantly.
S, T ,U are defined with the SM expectation subtracted

so that S = T = U = 0 in the SM per definition. However
the values of the Higgs and top quark mass strongly af-
fect the SM predictions so that they have to be specified in
any determination of S, T , U . From the recent data from
LEP, SLD and the Tevatron one obtains (mH = 120GeV,
mt = 172.5GeV)

S = 0.03±0.10 ,

T = 0.04±0.13 ,

U = 0.10±0.13 ,

corresponding to

α1 =−0.0006±0.0020 ,

β1 = 0.00015±0.00047 ,

α8 =−0.0020±0.0026 .

If insteadmH = 1 TeV is used one has to add

δα1 =+0.0020 ,

δβ1 =+0.00069 ,

δα8 =−0.0002 .

It should however be noted that the parameters are strong-
ly correlated and formH = 1TeV the data are inconsistent
with S = T = U = 0 to almost 10σ.
At the ILC one may improve the measurement of the

leptonic width of the Z in the GigaZ running mode by
a factor two [104]. The main improvement is however po-
ssible in the measurement of the weak mixing angle from
the left–right asymmetry. Here a factor ten is possible. The
single parameter errors on α1 and β1 only get smaller by
a factor two to three determined by the improvement of the
leptonic width, however the correlation between the two
parameters increases so that the small axis of the error el-
lipse shrinks by a factor 10.
The precision on the W mass can be brought to 6MeV

by a scan of theW -threshold region, improving the current
error by a factor five [105]. This improves the error on α8 by
a factor three, again increasing the correlations.
In many models one has α8 ∝ U = 0, so that the oblique

parameters are often fitted with this constraint. In this case
also theW -mass measurements influences the large axis of
the α1−β1 error ellipse, so that the expected improvement
from ILC is a factor four to six.

4.2 Trilinear gauge couplings

The trilinear gauge couplings have been measured at LEP
from W -pair production with small contributions from
other processes like singleW production [102, 103]. At LEP
no beam polarization was available, preventing the sepa-
ration of the WWZ from the WWγ couplings. For this
reason in the analyses the so-called SU(2) relations have
been applied:

∆κZ =∆g
Z
1 −∆κγ tan

2 θW ,

λZ = λγ ,

which is equivalent to demanding α9−α8 = αλ2 = 0. The
errors turn out to be about 2/16π2 for α3 and α

λ
1 and

6/16π2 for α2.
At ILC, using beam polarization, all triple gauge cou-

plings can be measured separately with small correla-
tions [106]. If all αs are fitted simultaneously, all errors are
well below 0.1/16π2, except for α3 and α9, where the error
is slightly above it, with a large correlation between the
two. If α9 is fixed in the fit, the error on α3 gets as small as
the other ones.

5 Triple vector-boson production at the ILC

We consider the reactions e+e−→W+W−Z and e+e−→
ZZZ, that are sensitive to generic quartic gauge couplings.
These are parameterized in terms of the effective Lagran-
gians Li, see (12), with coupling parameters αi, for i= 4,
5, 6, 7, 10. The processes also depend on some of the lower-
order couplings that induce triple gauge couplings and
oblique corrections; however, regarding the high accuracy
of the corresponding measurements at the ILC (cf. the pre-
vious section), we accept these as pre-determined and set
them to zero for the current analysis. We expect that real
ILC data will be analyzed by a global fit of all electroweak
parameters, including bilinear, trilinear, and quartic cou-
plings, but this is beyond the scope of the present paper.
In this and the following section we investigate the sen-

sitivity of future experiments at the ILC on the coupling
constants αi and thus, indirectly, on the masses of any
new resonances in the EWSB sector. In triple gauge-boson
production processes not all anomalous couplings can be
disentangled individually. The process e+e−→W+W−Z
depends on the α parameters in the two linear combina-
tions α4+α6 and α5+α7, while the process e

+e−→ ZZZ
depends on the single combination α4+α5+2(α6+α7+
α10). For the study of triple gauge-boson production we
concentrate on α4 and α5 as independent couplings.
In theWWZ final state the rate is dominated by a large

SMbackground that, however, canbe substantially reduced
using polarizedbeams that enrich the relative appearanceof
longitudinal vector-bosonpolarizations that are sensitive to
the EWSB sector. Hence, forWWZ we investigate several
running scenarios that are discussed for the ILC:

– (A) unpolarized,
– (B) 80% right-handed polarized electrons, and



366 M. Beyer et al.: Determination of new electroweak parameters at the ILC – sensitivity to new physics

– (C) 80% right-handed polarized electrons along with
60% left-handed polarized positrons.

For ZZZ the SM background is much smaller and polariza-
tion is not substantial.
The total cross section at

√
s = 1000GeV as calcu-

lated with the event generator WHIZARD [107, 108] is
given in Table 1. The three-boson final state is character-
ized by three four-momenta and the bosonic spins. If the
bosonic spins are not analyzed, only three kinematical vari-
ables are independent, as follows from symmetry consider-
ations and energy-momentum conservation.We choose two
invariant masses, M2WZ = (pW + pZ)

2, M2WW = (pW+ +
pW−)

2, and the angle θ between the e− beam axis and
the direction of the Z-boson. The differential cross section

Table 1. Cross section for triple boson
production at

√
s = 1000 GeV for different

initial state polarization. (A) unpolarized,
(B) 80% R electrons, and (C) 80% R elec-
trons with 60% L positrons

WWZ ZZZ

no pol. e−pol. both pol. no pol.
59.1 fb 12.3 fb 5.57 fb 0.79 fb

Fig. 1. Reconstructed cos θ,MWW ,
and MWZ signal distributions for
e+e−→WWZ for

√
s= 1TeV, a lu-

minosity of 1 ab−1, and both beams
polarized. To see the shape depen-
dence the distributions are normal-
ized to the respective total number
of events for the standard model
(solid), 16π2α4 ≈ 15.8 (dashed) and
16π2α5 ≈ 15.8 (dotted)

dσ(MWW ,MWZ , cos θ) is discretized into bins denoted by
i, j, k forMWZ ,MWW , and cos θ. Assuming an integrated
luminosity of

∫
L= 1000 fb−1, each bin contains the num-

ber of events Nijk given by the differential cross section.
We choose 10 bins for cos θ ∈ [−1, 1] and 12 bins for MWZ
or MWW ∈ [0, 1000]GeV. The according distributions of
cos θ, MWW , and MWZ are shown in Fig. 1. Since the ef-
fective Lagrangian is linear in the anomalous couplings,
N theoijk (α4, α5) is a polynomial of second order, namely

N theoijk (α4, α5) =N
sm
ijk

(
1+RAijkα4+R

B
ijkα

2
4+R

C
ijkα5

+RDijkα
2
5+R

E
ijkα4α5

)
. (79)

The coefficients RA...Eijk are determined by reweighting,
i.e., for five fixed pairs of anomalous couplings α4, α5 we re-
calculate the respective weight, normalized to the weight of
the SM event. By inversion, the relative weight ri of each
event can then be written as an analytical function of the
anomalous couplings,

ri = 1+aiα4+ biα
2
4+ ciα5+diα

2
5+ eiα4α5 . (80)

The new weights are accumulated for each bin and finally
lead to the coefficients in (79). The kinematical variables
are reconstructed as will be explained below. Finally we
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calculate the χ2 contribution given by

χ2 =
∑
i,j,k

(
N expijk −N

theo
ijk (α4, α5)

)2
σ2ijk

, (81)

where i, j, k are the sums over bins of MWZ , MWW , and
cos θ. σijk denotes the error of the bin (i, j, k) and is taken

as
√
N expi,j,k. Only O(1000) events enter in the final analy-

sis, and it is assumed that systematic uncertainties can
be brought to a negligible level compared to the statisti-
cal errors using control samples like e+e−→W+W− or
e+e−→ tt. It is also assumed that theoretical and para-
metric errors can be brought to a negligible level. For these
reasons only statistical errors have been included in the an-
alysis. From the minimization of this χ2 distribution we
determine ∆αi (with all αj = 0). The final result is shown
in Fig. 2.
The simulation is done with the WHIZARD event

generator [107, 108] using the matrix-element generator
O’Mega [109–112] and the VAMP multi-channel phase
space integration package [119]. For the study presented
here, we simulate on-shell gauge bosons and decay and
hadronize the final state using PYTHIA [113, 114]. Results
gained from extending this to full six-fermion matrix elem-
ents and spin correlations will be presented in a future
publication [115]. The detector is simulated using the fast
simulation SIMDET [116].
We produce SM events corresponding to a center of

mass energy
√
s = 1TeV and a luminosity of 1000 fb−1.

Three-boson events are reconstructed via six (hadronic)
jets utilizing the YCLUS jet-finding algorithm with the
Durham recombination scheme. About 32% of all WWZ
or ZZZ decays are purely hadronic. Other reconstruction
channels are also possible but are presently not consid-
ered. The dominant background is due to tt̄→ bb̄WW → 6
jets. We select events with the kinematical conditions for
a combination of missing energy and transverse momen-
tum E2mis+ p

2
⊥,mis < (65 GeV)

2 and minimum jet energy
Eminjet > 5 GeV. Two jets are combined to form a W or a Z
requiring

−15GeV <mcand−mtrueW < δM

−δM <mcand−mtrueZ < 15 GeV , (82)

where δM = (mtrueW +mtrueZ )/2, and mtrue is taken from
the Particle Data Group (PDG) [101]. Finally, we take
the combination that minimizes the deviation from the
PDG values and do a kinematical fit of the bosonic mo-
menta to the total energy and momentum. The top quark
is identified via a b-jet that is combined with two jets from
a W candidate. Top-quark events are vetoed if |mcandt −
mtruet | < 15 GeV and the events are consistent with the tt̄
topology. The reconstruction efficiency forWWZ is about
12%. This reflects about 36% of all hadronic channels. The
purity of the signal is about 98% (case A), 94% (case B),
85% (case C) of WWZ. The reconstruction efficiency of
ZZZ is about 8%. The purity is 29%, dominated by the
largeWWZ background. The reconstructed momenta are

Fig. 2. Expected sensitivity for α4/α6 and α5/α7 at
√
s =

1000 GeV. Luminosity assumption 1000 fb−1. aWWZ-channel
only, for an unpolarized beam (A) and the different polariza-
tions cases, e− only polarized (B) and both beams polarized
(C) as explained in the text. Solid lines represent 90% confi-
dence level, the dashed line is for 68%, i.e. ∆χ2 = 2.3. b Com-
bined fit using WWZ of case (C) and ZZZ production. Lines
represent 90% (outer line), 68% (inner line) confidence level

used to determine the χ2. To minimize fluctuations in the
sensitivity, we increase the statistics by factors of 5 . . . 100
depending on the process and renormalize Nijk accord-
ingly. The contours and the error intervals are calculated
with MINUIT [117].
Results are shown in Fig. 2 and Table 2. For WWZ

we give in Fig. 2a the 90% contours for the different po-
larization cases A, B, and C, and for both beams po-
larized also the 68% contour. Since the dependence on
α4 is rather shallow for α4 > 0 in WWZ boson pro-
duction, there appears a pocket in the χ2 surface that
shows up as a partly concave contour in Fig. 2. This
pocket disappears when higher statistics and/or more ob-
vervables are considered. The respective ∆αi are given
in Table 2. Note that for WWZ two parameters are in-
dependent, while for ZZZ only one. Hence for WWZ
we get ∆α4 = ∆α6, ∆α5 = ∆α7, and no sensitivity to
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Table 2. Sensitivity of α4 and α5 expressed as 1σ errors.
WWZ: two-parameter fit; ZZZ: one-parameter fit; best: best
combination of both. σ± are the asymmetric errors

WWZ ZZZ best

no pol. e− pol. both pol. no pol.
case A case B case C

16π2∆α4 σ+ 9.79 4.21 1.90 3.94 1.78

σ− −4.40 −3.34 −1.71 −3.53 −1.48
16π2∆α5 σ+ 3.05 2.69 1.17 3.94 1.14

σ− −7.10 −6.40 −2.19 −3.53 −1.64

α10. For ZZZ we have ∆α4 =∆α5 =
1
2∆α6 =

1
2∆α7 =

1
2∆α10. We find that the sensitivity strongly increases
with polarization, cf. the different cases A, B, and C.
A best combined fit for triple boson production is given
in Fig. 2b.
The sensitivity could be further improved by using the

information provided by the angular distribution of jets,
since the EWSB sector mainly affects the longitudinal po-
larization directions of vector bosons. This will be covered
in a future publication [115].

6 Vector-boson scattering processes
at the ILC

In this section we consider those six-fermion processes in
e+e− and e−e− collisions that depend on quartic gauge
couplings via quasi-elastic weak-boson scattering subpro-
cesses, i.e., V V → V V , where V =W±, Z. We use full
six-fermion matrix elements and thus do not rely on sim-
plifications such as the effective W approximation, the
Goldstone-boson equivalence theorem, or the narrow-
width approximation for vector bosons.
For the simulation we assume a c.m. energy of 1 TeV

and a total luminosity of 1000 fb−1 in the e+e− mode.
Beam polarization of 80% for electrons and 40% for posi-
trons is also assumed. Since the six-fermion processes
under consideration contain contributions from the triple
weak-boson production processes considered in the pre-
vious section (ZZ or W+W− with neutrinos of second
and third generation as well as a part of νeν̄eWW (ZZ),
eνeWZ and e

+e−W+W− final states), there is no distinct
separation of signal and background. Signal processes in
a separate analysis are thus affected by all other signal
processes as well as by pure background.
The present study extends the previous one [118] which

considered a restricted set of channels and parameters. In
addition to the backgrounds considered there, we include
single weak-boson production in the background simu-
lation for completeness. We take initial-state radiation
into account when generating events. For the generation
of tt̄ events we use PYTHIA [113, 114]. The event sam-
ples are generated by the multi-purpose event generator
O’Mega/WHIZARD [107–112], using exact six-fermion
tree-level matrix elements. No flavor summation is ne-

cessary since all possible quark final states are gener-
ated. Hadronization is done with PYTHIA. We use the
SIMDET [116] program to produce the detector response
of a possible ILC detector.
Table 3 contains a summary of all generated processes

used for analysis and their corresponding cross sections.
For pure background processes a full 1 ab−1 sample is
generated. All signal processes are generated with higher
statistics. Single weak-boson processes and qq̄ events are
generated with an additional cut on M(qq̄) > 130GeV to
reduce the number of generated events.
The observables sensitive to the quartic couplings are

the total cross section (either reduction or increase depend-
ing on the interference term in the amplitude and the point
in parameter space), and modification of the differential
distributions in vector-boson production angle and decay
angle. This is not a full set of observables, but some sen-
sitive event variables, for example transverse momentum,
cannot be used since the contribution of longitudinally po-
larized weak bosons is dropping faster than for transver-
sally polarized weak bosons with increasing transverse mo-
mentum, and a transverse-momentum cut is unavoidable
to suppress the background in the analysis.
The event selection is done by a cut-based approach

similar to the previous analysis [118]. The general steps in
the analysis are the use of the final state e−(e+) to tag
background (signal in the eνeWZ case), a cut on trans-
verse momentum, and missing mass and energy. Realis-
tic ZVTOP b-tagging [120] is used whenever possible to
improve the signal-to-background separation. Finally, we
apply cuts around the nominal masses of weak bosons to
accept only well-reconstructed events.
The extraction of quartic gauge couplings from recon-

structed kinematic variables is done by a binned likeli-
hood fit. For each signal process, we generate statistics
much larger than the nominal 1000 fb−1 for e+e− and pass
the events through the detector simulation. Each event is

Table 3. Generated processes and cross sections for signal and
background for

√
s = 1TeV, polarization 80% left for electron

and 40% right for positron beam. For each process, those final-
state flavor combinations are included that correspond to the
indicated signal or background subprocess

Process Subprocess σ [fb]

e+e−→ νeν̄eqq̄qq̄ W+W−→W+W− 23.19

e+e−→ νeν̄eqq̄qq̄ W+W−→ ZZ 7.624

e+e−→ νν̄qq̄qq̄ V → V V V 9.344

e+e−→ νeqq̄qq̄ WZ→WZ 132.3

e+e−→ e+e−qq̄qq̄ ZZ→ ZZ 2.09

e+e−→ e+e−qq̄qq̄ ZZ→W+W− 414

e+e−→ bb̄X e+e−→ tt̄ 331.768

e+e−→ qq̄qq̄ e+e−→W+W− 3560.108

e+e−→ qq̄qq̄ e+e−→ ZZ 173.221

e+e−→ eνqq̄ e+e−→ eνW 279.588

e+e−→ e+e−qq̄ e+e−→ e+e−Z 134.935

e+e−→X e+e−→ qq̄ 1637.405
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described by reconstructing four kinematic variables: the
event mass, the absolute value of the production angle co-
sine, and the absolute values of the decay angle cosines for
each reconstructed weak boson. Only the absolute value
of the production and decay angles are used, since there
is no possibility to resolve quark–antiquark and W+W−

ambiguities.
Starting from an unweighted event sample as generated

by WHIZARD, we use the complete matrix elements en-
coded in the event generator itself to reweight each event
as a function of the quartic gauge couplings. Each Monte
Carlo event is weighted by

R(αi, αj) = 1+Aαi+Bαi
2+Cαj+Dαj

2+Eαiαj . (83)

The functionR(αi, αj) describes the quadratic dependence
of the differential cross section on the anomalous couplings.
It is obtained in the following way: using the generated SM
events (i.e., αi ≡ 0), we recalculate the matrix element for
each event at five different points in αi, αj space and solve
a set of linear equations for A, B, C, D and E. Due to
the linear functional dependence of the amplitude [121–
125] on the couplings, five points are enough to determine
the coefficients for the weighting function. The choice of
the points varies from process to process in order to ful-
fil the following conditions: the distance of the point(s)
from the SM value should be large enough not to come into
numerical instabilities when solving the equations, and at
the same time small enough not to come into the region
were phase space population would be significantly differ-
ent from the SM.
The obtained four-dimensional event distributions are

fitted with MINUIT [117], maximizing the log-likelihood
distribution, L, as a function of αi,αj by taking the SM
Monte Carlo sample as “data”:

L(αp, αq) =−
∑
i,j,k,l

NSM(i, j, k, l) ln (Nαp,αq(i, j, k, l))

+
∑
i,j,k,l

Nαp,αq(i, j, k, l) , (84)

where i runs over the reconstructed event energy, j over
the production angle, k and l over the decay angles. The

Table 4. Dependence of all quasi-elastic weak-boson scatter-
ing processes accessible at the ILC on the quartic anomalous
couplings. In addition to the e+e− processes considered in this
paper, we list the e−e− processes for illustration

e+e−→ α4 α5 α6 α7 α10

W+W−→W+W− + + − − −
W+W−→ ZZ + + + + −
W±Z→W±Z + + + + −
ZZ → ZZ + + + + +

e−e−→ α4 α5 α6 α7 α10

W−W−→W−W− + + − − −
W−Z→W−Z + + + + −
ZZ → ZZ + + + + +

NSM(i, j, k, l) are the “data” which correspond to the SM
Monte Carlo sample, andNαp,αq(i, j, k, l) is the sum of the
same SM events in this bin, each reweighted by R(αp, αq).
Pure background events have R(αp, αq) = 1, and for back-
ground coming from other sensitive processes the proper
weight is taken into account. Again, like in Sect. 5, we take
only statistical errors into account, since they will domi-
nate over systematic and theory errors. After a separate
analysis for each process (see Table 4), we perform a com-
bined fit. A small fraction of doubly-counted events that
remains after the single process analysis is uniquely as-
signed to one or another set according to the distance from
the nominal mass of the weak boson pair (for exampleWW
or ZZ).

7 Combined results and resonance
interpretation

In Tables 5 and 6 we combine our results for the meas-
urement of anomalous electroweak couplings for an inte-
grated luminosity of 1000 fb−1 in the e+e− mode, assuming
SU(2)c conservation and non-conservation, respectively.
In Fig. 3, the results are displayed in graphical form, pro-
jecting the multi-dimensional exclusion region in α space
around the reference point αi ≡ 0 onto the two-dimensional
subspaces (α4, α5) and (α6, α7).
In order to get a more intuitive physical interpretation

in terms of a new-physics scale, in this section we trans-
form anomalous couplings into resonance parameters, as
described in Sect. 3. To this end, we also include the ex-
pected ILC results for triple gauge couplings and oblique
corrections in the fit. Assuming one particular resonance
at a time, for each measured value of some α parameter,

Table 5. The expected sensitivity from
1000 fb−1 e+e− sample at 1 TeV in the
SU(2)c conserving case, positive and nega-
tive one sigma errors given separately

coupling σ− σ+

16π2α4 −1.41 1.38

16π2α5 −1.16 1.09

Table 6. The expected sensitivity from
1000 fb−1 e+e− sample at 1 TeV in the bro-
ken SU(2)c case, positive and negative 1
sigma errors given separately

coupling σ− σ+

16π2α4 −2.72 2.37

16π2α5 −2.46 2.35

16π2α6 −3.93 5.53

16π2α7 −3.22 3.31

16π2α10 −5.55 4.55
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Fig. 3. Expected sensitivity (combined fit for all sensitive pro-
cesses) to quartic anomalous couplings for a 1000 fb−1 e+e−

sample. The full line (inner one) represents 68%, the dotted
(outer) one 90% confidence level. a conserved SU(2)c case
b broken SU(2)c case

we may deduce the properties of the resonance that would
result in this particular value. Inserting the values that
correspond to the sensitivity bound obtained by the ex-
perimental analysis, we get a clear picture on the possible
sensitivity to resonance-like new physics in the high-energy
region. For this purpose, we use 1σ deviations from the
SM values. In the simplest possible case, the scalar sing-
let without isospin violation, we show the changes when
going to the 2σ limits. This reduces the achievable values
for the resonance masses by about 8%. We expect a similar
behavior for the more complicated cases, where the largest
uncertainties come rather from the higher number of model
parameters than from statistics.

7.1 J = 0 channel

7.1.1 Scalar singlet: σ

(i). We first consider the isospin-conserving case, hσ = 0,
which leads to α7 = α10 = 0. Since α4 = α6 = 0, there is
only a dependence on α5 as a free parameter. After the fit,
we get σ16π2α5 = 0.42 for the symmetric error or −0.452<
16π2α5 < 0.397 for the asymmetric ones at 1σ level. For the
2σ level the parabolic error is 16π2∆α5 = 0.596, the asym-
metric ones −0.66< 16π2α5 < 0.55.
Expressing the width of the resonance as a fraction

of its mass, Γσ = fσMσ, it is possible to solve (19) and

Fig. 4. Mass of the scalar singlet resonance in the isospin-
conserving case as a function of α5, with the resonance’s width
to mass ratio fσ equal to 1.0 as full , 0.8 as dashed , 0.6 as dot-
dashed , and 0.3 as dotted line, respectively. The left vertical line
in the plot is the 1σ limit on α5, the right one the 2σ limit

α5 = g
2
σ
v2

8M2σ
to obtain the resonance mass as a function of

the quartic coupling and this fraction:

Mσ = v

(
4πfσ
3α5

) 1
4

. (85)

In Fig. 4, we plot the mass of a scalar singlet resonance as
a function of the coupling for a given width. The vertical
lines in the plot are (from left to right) the 1σ and 2σ er-
rors for a calculation of the mass from a given value of the
width. The corresponding mass reach depending on differ-
ent width to mass ratios is shown in Table 7.

(ii). If we allow for isospin violation, α4 and α6 are still
zero, leaving the three free parameters α5, α7 and α10 for
the fit. With only two independent variables, the system
of (18a) and (19) is overconstrained with the additional
relation

α27 = 2α5α10 . (86)

By this equation one is able to eliminate one of the cou-
plings from further consideration. We will choose to elimi-
nate α10. Solving the system of equations, it is now possible
to express the mass as a function of the width, α5 and α7:

Mσ = v

(
4πα5fσ

2α25+(α5+α7)
2

) 1
4

. (87)

Table 7. Mass reach for the scalar res-
onance in the SU(2)c conserving case de-
pending on different resonance widths. The
first line gives the reach from the 1σ limit,
the second one from the 2σ limit

fσ =
Γσ
Mσ

1.0 0.8 0.6 0.3

M1σσ [TeV] 1.55 1.46 1.36 1.15

M2σσ [TeV] 1.42 1.34 1.25 1.05
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Fig. 5. Scalar singlet with isospin breaking: On the top, 1σ
contour in the α5–α7 plane. On the bottom, the dependence of
the resonance mass on α5 along the contour for fσ = 1 (width
equal to the mass) as full , fσ = 0.8 as dashed , and fσ = 0.6 as
dot-dashed line, respectively. The upper and lower lines corres-
pond to the different branches of the solution of α7 = F [α5],
respectively

If we limit ourselves to the case that we vary the couplings
only along the 1σ contour in the α5,α7 plane, we end up
with the result shown in Fig. 5. The lower of the two dashed
curves gives a lower limit on the allowed region. On the

Fig. 6. Allowed region for a scalar singlet resonance with
isospin breaking as a function of α5 between the upper and
lower bound. Ratio of width to mass of the resonance equal to
1.0 (full), 0.8 (dashed), and 0.6 (dot-dashed), respectively

Table 8. Mass reach for the scalar
singlet resonance in the case of
isospin breaking depending on the
width to mass ratio fσ. We use an
average mass along the contour

fσ =
Γσ
Mσ

1.0 0.8 0.6

Mσ [TeV] 1.39 1.32 1.23

other hand, one can look for the maximum mass for the
α parameters within the 1σ contour. This is equivalent
to minimizing the width (19) by gσ =−2hσ, which yields
a maximummass (depending on the allowedα parameters)
for α5 =−α7 of

Mσ = v

(
2πfσ
α5

) 1
4

. (88)

Figure 6 shows the allowed region for different values of
the width to mass ratio of the scalar singlet resonance.
This means that a scalar singlet resonance corresponding
to measured α5,7 values lying in the simulated 1σ contour
cannot be heavier than the given upper limit. The mass
reach in that case is listed in Table 8.

7.1.2 Scalar triplet: π

(i). In principle, for a scalar triplet, there is no isospin-
conserving limit, since SU(2) breaking is necessary to
couple a triplet to two identical bosonic triplets. Neverthe-
less, there is a case, where hπ = kπ = 0 and only h

′
π �= 0. In

that case, the SM fields couple in an SU(2)-invariant way,
and the isospin breaking resides in the coupling of the new
resonances only. Therefore, a resonance with such a coup-
ling would – to the order we are considering – leave no trace
in the isospin-breaking operators, but only gives a contri-
bution to L5. So experimentally, the isospin breaking is not
detectable without direct access to the heavy resonances.
Hence, again at leading order, there is no contribution to
the width of the π± from electroweak gauge bosons. In this
case, we regain the formula for the singlet case,

Mπ0 = v

(
4πfπ0

3α5

) 1
4

, (89)

while the charged resonance is not accessible in gauge-
boson scattering. Such a case would experimentally be in-
distinguishable from a singlet scalar. The bounds from the
isospin-conserving singlet case also apply here.

(ii). If we allow for general isospin-breaking couplings,
from (25a) we get the constraint

α27 = 2α5(α6+α10) , (90)

which is the generalization of the singlet case. The cor-
respondence between the singlet and the triplet discussed
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above goes even further. If we put hπ to zero, the for-
mula for the αs as well as for the width between singlet
and triplet correspond to each other with the identifica-
tion: gσ↔ h′π, hσ↔ kπ . In that case,α6 is zero, the charged
resonance decouples at leading order, and the two rela-
tions (86) and (90) are then identical, as are the formulas
for the mass of the neutral resonance as a function of α5,7.
So for the case hπ = 0 we can reuse the results from the
fit for the isospin-breaking singlet. Allowing finally also for
non-vanishing hπ (i.e. non-vanishing α6), we again use the
overconstraining to eliminate α10. Solving the remaining
system we get

Mπ± = v

(
4πfπ±

α6

) 1
4

(91a)

Mπ0 = v

(
4πα5fπ0

2α25+(α5+α7)
2

) 1
4

. (91b)

The formula for the neutral component still is the same
as for the non-conserving singlet case, which can be un-
derstood by using the above correspondence and replacing
2kπ → 2kπ+hπ in the formulas for the αs and the width.
So the limits for the neutral component remain the same,
and Figs. 5 and 6 are also applicable here. The mass reach
for the scalar triplet in the isospin-breaking case is given
in Fig. 7 and Table 9.
A technical remark:α5 and α6 must be positive in order

to get real solutions for the mass. The solutions for the
mass decouple α6 and α5, α7 from each other, but we can

Fig. 7. Dependence of the resonance mass for the charged
scalar triplet component on α6 for different assumed width to
mass ratios (fπ = Γπ/Mπ = 1.0 as full , 0.8 as dashed , 0.6 as
dot-dashed , 0.3 as dotted line, respectively). The vertical line
represents the maximal value of α6 along the 1σ surface

Table 9. Dependence of the mass reach for
scalar triplet resonances on different reson-
ance widths. For the neutral narrow state
the mass reach is already below 1TeV

fπ =
Γπ
Mπ

1.0 0.8 0.6 0.3

Mπ0 [TeV] 1.39 1.32 1.23 —

Mπ± [TeV] 1.55 1.47 1.37 1.15

still use the error matrix and the functional dependence
from (90) to fix the points on the 1σ surface.

7.1.3 Scalar quintet: φ

(i). For isospin conservation, only gφ and hence only α4 is
non-vanishing. Solving the system (31a) and (32a) yields

Mφ = v

(
4πfφ
α4

) 1
4

. (92)

The results for the isospin-conserving case are shown in the
upper plot of Fig. 8 and the upper half of Table 10.

(ii). For the case of broken isospin symmetry, we first con-
sider the case that only h′φ �= 0, so that only α5 is non-
vanishing. The charged and doubly-charged resonances do
not get a contribution to their width at leading order, while
solving for the mass of the neutral state results in

Mφ0 = v

(
2πfφ0

α5

) 1
4

. (93)

Fig. 8. Dependence of the resonance mass for the scalar quin-
tet on the α parameters for different width to mass ratios,
fφ = Γφ/Mφ = 1.0 (full), 0.8 (dashed), 0.6 (dot-dashed), and 0.3
(dotted), respectively. Top: isospin-conserving case, degenerate
mass of the whole multiplet as a function of α4. Bottom: special
isospin-breaking case with only h′φ different from zero. Mass of
the neutral component as a function of α5. The vertical red line
represents the 1σ limit for α4 and α5, respectively
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Table 10. Mass reach for the scalar quin-
tet depending on different ratios of width to
mass. On the upper line, the SU(2)c con-
serving case, on the lower one the special
isospin-breaking case with only h′φ �= 0

fφ =
Γφ
Mφ

1.0 0.8 0.6 0.3

Mφ [TeV] 1.95 1.85 1.72 1.45

fφ0 =
Γφ0
Mφ0

1.0 0.8 0.6 0.3

Mφ0 [TeV] 2.06 1.96 1.82 1.53

The fit and the 1σ reach are shown in the lower plot
of Fig. 8 and the lower half of Table 10. There is a further
special case when α4 =−α6, in which the charged reson-
ance does not get a contribution to the width. Here also
a singularity for the neutral state appears where the de-
nominator for the mass of the neutral state vanishes. We
ignore this case here.
The next step is that we allow for non-zero gφ and h

′
φ,

which results in non-zero α4, α5 and α7 with the constraint
α27 = α5α4. Note that the term proportional to gh

′ in the
width of the neutral state cancels – and hence the depen-
dence on α7. In this special case, the formula for the masses
of the charged and doubly-charged states remains the same
as (92). The mass reach equals the isospin-conserving case.
In principle, isospin non-conservation can be detected by
the different width of the neutral state. The solution for
that component becomes

Mφ0 = v

(
4πfφ0

α4+2α5

) 1
4

, (94)

with constraints α4 > 0 and α5 > 0. This case is shown
in Fig. 9 and Table 11.
For the completely general case of isospin breaking, the

relation between the couplings is now a generalization of

Fig. 9. Dependence of the mass of the neutral component of
a scalar quintet resonance for the case with only gφ, h

′
φ non-zero,

as a function of α4 for different width to mass ratios: full line
fφ = Γφ/Mφ = 1.0, dashed 0.8, dot-dashed 0.6, and dotted 0.3

Table 11.Mass reach for the neutral com-
ponent of the scalar quintet in the case
with only gφ, h

′
φ non-zero, depending on

different width to mass ratios

fφ =
Γφ
Mφ

1.0 0.8 0.6 0.3

Mφ0 [TeV] 1.77 1.67 1.55 1.31

the triplet case, namely

α27 = 2α5

(
1

2
α4+α6+α10

)
, (95)

to again eliminate α10.
We obtain the solution for the masses (ξ4,6,10 ≡ α4+

2α6+2α10):

Mφ±± = v

(
4πfφ±±

α4

) 1
4

(96a)

Mφ± = v

(
4πfφ±

α4+α6

) 1
4

(96b)

Fig. 10. Dependence of the mass of the neutral (top) and the
charged component (bottom) of a scalar quintet resonance in
the completely general case, as a function of α5 and α4, re-
spectively, for different width to mass ratios: fφ = Γφ/Mφ = 1.0
(full), 0.8 (dashed), 0.6 (dot-dashed), and 0.3 (dotted). The
doubly-charged component remains the same as in the isospin-
conserving case, shown on the top of Fig. 8
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Table 12. Mass reach for the scalar quin-
tet in the most general case.Mφ0 andMφ±
are averages over the lower limit curves

fφ =
Γφ
Mφ

1.0 0.8 0.6 0.3

Mφ±± [TeV] 1.95 1.85 1.72 1.45

Mφ± [TeV] 1.64 1.55 1.44 1.21

Mφ0 [TeV] 1.55 1.46 1.35 1.14

Mφ0 = v

(
12πα5fφ0

(
√
α4α5−2α5)2+2(α7+α5)2

) 1
4

= v

(
12πfφ0

(
√
α4−2

√
α5)2+2(

√
ξ4,6,10+

√
α5)2

) 1
4

.

(96c)

For the neutral state, the first formula is in correspon-
dence to those for the non-isospin conserving singlet and
triplet case, while the second one is better suited for taking
the limit to the isospin-conserving case.
The dependence of the masses on the αs for the com-

pletely general case is shown in Fig. 10, the mass reach
in Table 12.

7.2 J = 1 channel

7.2.1 Vector singlet: ω

For the vector singlet, isospin breaking has to be involved.
Concerning the analysis and the fit, we ignore the param-
eter kω because it has no physical meaning in terms of the
resonance mass and width, at least in the order we are con-
sidering. So all eight non-vanishing α parameters are the
same,

α1 = α2 = α4 = α7 =−α5 =−α6 =−α8
=−α9 . (97)

Furthermore, the three non-zero αλ parameters are also
the same, αλ2 = α

λ
5 = −α

λ
1 . Including the parameter kω,

which could, of course, occur in the α parameters, changes
the above result to

α1 = α2 = α4 = α7 =−α5 =−α6 =−α8 ,

α9 =−(α3+α4) .

Using only the parameters α4 and α
λ
2 eliminates the de-

pendence on kω. The mass of the singlet resonance is then
given by

Mω = v

(
12πα4fω

α24+
1
2 (α

λ
2 )
2

) 1
4

. (98)

For the fit we used the simplifying assumption �ω = 0,
which yields the simplified mass formula

Mω = v

(
12πfω
α4

) 1
4

. (99)

So this reduces to a one-parameter fit. As a cross-check,
the error matrix for ∆gZ1 ,∆κ

Z , λZ from [106] has been re-
produced. The limits for the vector singlet in the case of
vanishing �ω are given in Fig. 11 and Table 13.
Taking also �ω into account, one can solve for the mass

of the vector resonance as a function of α4, fω and λZ . Tak-
ing the limits on the latter parameter from [106], 0� λZ �
0.00033, allows one to get an allowed region for the mass
of a vector-singlet resonance as a function of α4. The re-
sult in that case is shown in Fig. 12 and the mass reach
in Table 14. Compared to Table 13, one sees that includ-
ing the parameter �ω enlarges the mass reach a bit, as one
would have expected.
One point should be mentioned: a singlet vector reson-

ance contributing to the electroweak sector is maximally
SU(2)c violating, and contributes significantly to β1, i.e.
T . Since this is the only constraint at order 1/M2, it is
by far dominant. As our main point is to point out what
a measurement of the α parameters can do in unravel-
ing the structure of electroweak symmetry breaking, we
assumed that there is another contribution (e.g. a heavy
scalar triplet) cancelling the ω contribution to β1, leaving
one with only terms of order 1/M4. The constraint from T
taken literally is shown in Fig. 13, showing that most of the
allowed parameter range is cut out.

Fig. 11. Dependence of the mass of a singlet vector resonance
on α4 for different assumed fπ = Γπ/Mπ = 1.0 as full , 0.8 as
dashed , 0.6 as dot-dashed , and 0.3 as dotted line, respectively.
The condition 	ω = 0 is used

Table 13. Mass reach for a singlet vector
resonance in the case 	ω = 0 for different
assumed width to mass ratios

fω =
Γω
Mω

1.0 0.8 0.6 0.3

Mω [TeV] 1.74 1.65 1.53 1.29
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Fig. 12. Dependence of the mass of a singlet vector resonance
on α4 including the parameter 	ω for different assumed width
to mass ratios: on the top 1.0, and 0.3 on the bottom. The ver-
tical line is the 1σ upper limit for α4. The allowed resonance
mass is between the dashed and the full curve, which are for the
maximally and minimally allowed values of λZ in [106], respec-
tively

Table 14.Mass limit for the vector singlet
resonance for the general case with 	ω �= 0.
The values in the table are average values
along the lower limit

fω =
Γω
Mω

1.0 0.8 0.6 0.3

Mω [TeV] 2.22 2.10 1.95 1.63

7.2.2 Vector triplet: ρ

For the analysis of the vector triplet, we assume for sim-
plicity that there is no mass splitting between the neutral
and charged state of the resonance. As for the vector sing-
let, in the sequel we ignore the parameters kρ, k

′
ρ, and k

′′
ρ .

To the order we are considering they do not contribute to
the widths of the resonances, and hence they do not enter
the electroweak fits at this stage. The same holds in princi-
ple for the coefficients of the magnetic moment operators of
the heavy resonances, µ and µ′. As they are quantities with
a more obvious physical interpretation we try to include
them in the fits.

Fig. 13. The allowed region for vector singlet resonances as
function of α4 from the constraint λZ . The constraint from β1,
i.e. the T parameter contribution from ω alone forces one to
stay below the dot-dashed line

(i). As usual, we first consider isospin conservation, with
only the parameters µ, g, � being non-zero. In principle, one
could consider also µ′, �′, and k being non-zero, since in
these terms isospin is only broken by hypercharge and not
by any new-physics effect. In this case, the relations among
the parameters are quite simple:

α1 = α4 =−α5 (=−α2) . (100)

The equality in parentheses holds only for µ′ = k = 0. For
the αλs we have

αλ1 = 3α
λ
3

(
=−3αλ2

)
. (101)

αλ2 gets a correction when �
′ is switched on, and αλ4 is not

zero anymore then. For the masses, we get in the pure
isospin-conserving case

Mρ = v

(
12πα4fρ

α24+2
(
αλ2
)2
) 1
4

, (102)

while for �′ switched on we have

Mρ± = v

⎛
⎜⎝ 12πα4fρ±

α24+2
(
αλ2
)2
+ 12

s2
W
c2
W

(
αλ4
)2
⎞
⎟⎠
1
4

,

(103a)

Mρ0 = v

(
12πα4fρ0

α24+2(α
λ
2 )
2

) 1
4

. (103b)

The case �ρ = 0 (i.e. α
λ
2 = 0) seems to bring one back to the

corresponding case for the vector singlet. But now the cor-
relations among the parameters are different; especially α6
and α7 are zero here but not in the singlet case. Note also
that the assumption gρ = 0, hρ �= 0 leads to the same result,
as the formulas for the width and the functional depen-
dence of the αs on the coupling change in the samemanner.
The mass reach for the vector triplet in this case is shown
in Fig. 14 and Table 15.
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Fig. 14. Dependence of the resonance mass for the vector
triplet on α4 in the (quasi-) isospin-conserving case hρ = 0
(gρ = 0) for different assumed widths (full line fρ = Γρ/Mρ =
1.0, dashed 0.8, dot-dashed 0.6, dotted 0.3, respectively). All
other parameters (µ, k, 	) are set to zero here. The vertical line
represents the 1σ limit for α4

Table 15.Mass reach for the vector triplet
if either gρ = 0 or hρ = 0 with all other pa-
rameters (	s, ks, µs) being zero, depending
on different resonance widths

fρ =
Γρ
Mρ

1.0 0.8 0.6 0.3

Mρ [TeV] 2.49 2.36 2.19 1.84

(ii). Taking into account isospin violation, we note that the
following relations hold generally among the α and αλ pa-
rameters:

α4 =−α5 , α6 =−α7 , (104a)

α1 = α4+α6 , α8 =−
α6

2

(
1+

α6

2(
√
α1+

√
α4)2

)
.

(104b)

And among the αλs we have

2
(
αλ1 +α

λ
2

)
=−

(
1+

√
α1

α4

)
(2αλ3 +α

λ
4 ) . (105a)

As a first case we set all kρs and �ρs to zero. The masses for
the resonances are then given by

Mρ± = v

(
12πfρ±

α4+α6

) 1
4

, (106a)

Mρ0 = v

(
12πfρ0

α4

) 1
4

. (106b)

The dependence of the charged and neutral state mass
on α4 is shown in Fig. 15, the corresponding mass reach
in Table 16.
We now consider the special case gρ =−hρ where the

β1 (T parameter) vanishes (we neglect a possible∆Mρ). To
simplify things, we first set all the ks and �s to zero. Then

Fig. 15. Dependence of the resonance mass for the vector
triplet on α4 with gρ, hρ �= 0 under the assumption 	ρ = 	

′
ρ =

	′′ρ = 0 for different assumed widths: full line fρ = Γρ/Mρ = 1.0,
dashed 0.8, dot-dashed 0.6, dotted 0.3, respectively. On the top
the neutral component is shown, on the bottom the charged one

Table 16.Mass reach for the vector triplet
with gρ, hρ �= 0 under the assumption 	ρ =
	′ρ = 	

′′
ρ = 0. Values for the charged com-

ponent are averaged over the lower limit

fρ =
Γρ
Mρ

1.0 0.8 0.6 0.3

Mρ± [TeV] 2.67 2.53 2.35 1.98

Mρ0 [TeV] 1.74 1.65 1.53 1.29

(104a) simplifies to

α1 =
1

3
α2 =−α3 =

1

9
α4 =−

1

8
α6 =

1

2
α9 . (107)

For this special isospin-violating case, the formulas for
the masses of the resonances are

Mρ± = v

(
108πfρ±

α4

) 1
4

, (108a)

Mρ0 = v

(
12πfρ0

α4

) 1
4

. (108b)

The dependence of the mass of the vector resonance in this
case is shown in Fig. 16, and the mass reach in Table 17.
Note that the difference between the charged and the neu-
tral state is just the factor

√
3 from (108).
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Fig. 16. Dependence of the resonance mass for the vector
triplet on α4 in the special isospin-violating case gρ = −hρ
for different assumed width to mass ratios (full line fρ =
Γρ/Mρ+ = 1.0, dashed 0.8, dot-dashed 0.6, dotted 0.3, respec-
tively). On the top is the charged resonance, on the bottom the
neutral one

Table 17.Mass reach for the vector triplet
in the special isospin-violating case gρ =
−hρ

fρ =
Γρ
Mρ

1.0 0.8 0.6 0.3

Mρ± [TeV] 3.09 2.92 2.72 2.29

Mρ0 [TeV] 1.78 1.69 1.57 1.32

Next, we still assume gρ =−hρ and hence no contribu-
tion to the T parameter, but we allow for non-zero values
of �ρ and �

′
ρ. In complete analogy to the discussion for

the vector singlet, we now have to include the measure-
ments of the triple gauge couplings to access λZ and λγ
in order to have enough equations at hand to solve the
system, which is fulfilled if one of the �ρs is set to zero.
We take �′′ρ ≡ 0. The triple gauge couplings in [106] are
given as functions of the resonance mass, the couplings in
the chiral Lagrangian, and the electroweak input param-
eters, GF, α, MZ , sW. Using the functional dependence
between the αi and the couplings in the chiral Lagrangian,
the triple gauge couplings become functions of the reson-
ance mass, the αi and the electroweak parameters. With
the help of the covariance matrix from Table 5 of [106] one
can construct the desired χ2 distribution. Solving numer-

ically for χ2 = χ2min.+1 (a polynomial equation of higher
order) yields the resonancemass as a function of the αi, the
triple gauge couplings, and the width to mass ratio. Taking
the allowed range of 0� λZ � 0.00033 from [106], we again
get an upper and a lower limiting curve for Mρ as a func-
tion of α4. The allowed range is in between. The situation is
shown in Fig. 17 for the charged state, and in Fig. 18 for the
neutral one. The mass reach for this choice of parameters is
given in Table 18.
As a next step, we still assume gρ = −hρ but allow

for non-vanishing µρ and µ
′
ρ. This offers the possibility of

various cancellations among the different parameters, es-
pecially since the µs enter linearly in the αs and can have

Fig. 17. Dependence of the resonance mass for the charged
component of the vector triplet on α4 for different assumed
widths (f = 1 on the top and f = 0.3 on the bottom) for gρ =
−hρ case, but 	ρ, 	

′
ρ �= 0. The full and dashed line are the lower

and upper limit from λZ , respectively. Vertical line: maximal
allowed value of α4. The grey shaded area is the allowed one
when µρ, µ

′
ρ �= 0

Table 18.Mass reach for the vector triplet
under the assumption gρ =−hρ with nonzero
	ρs. The values in the table are average
values along the lower limit curve

fρ =
Γρ
Mρ

1.0 0.8 0.6 0.3

Mρ± [TeV] 2.91 2.75 2.56 2.16

Mρ0 [TeV] 1.84 1.79 1.66 1.40
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Fig. 18. Same as Fig. 17, but for the neutral component

Table 19.Mass reach for the vector triplet
with the assumptions gρ = −hρ with non-
vanishing 	ρ, 	

′
ρ and non-vanishing µρ, µ

′
ρ.

The values in the table are average values
along the lower limit curve

fρ =
Γρ
Mρ

1.0 0.8 0.6 0.3

Mρ± [TeV] 2.54 2.41 2.34 1.88

Mρ0 [TeV] 1.71 1.62 1.51 1.27

arbitrary sign. This fact completely cancels the gain in
using a new constraint on the system, and so the bound for
the vector resonance mass loosens a bit. The allowed pa-
rameter regions are shown as light grey shadings in Fig. 17
for the charged and in Fig. 18 for the neutral state, respec-
tively. The mass reach is shown in Table 19.
Considering all isospin-violating terms, now (still ignor-

ing the ks) all α and αλ parameters are non-vanishing,
except for α10. The masses of the resonances are then

Mρ± = v

⎛
⎜⎝ 12πα1fρ±

α21+2(α
λ
3 )
2+ 12

s2
W
c2
W
(αλ4 )

2

⎞
⎟⎠
1
4

, (109a)

Mρ0 = v

⎛
⎜⎝ 12πα4fρ0

α24+2
(
αλ3

√
α4
α1
+2αλ5

)2
⎞
⎟⎠
1
4

. (109b)

Allowing for arbitrary variations of gρ and hρ and tak-
ing non-zero values for the �ρ, kρ and µρ parameters into
account, one again has to use the results from [106] to ac-
cess λγ and λZ from the measurements of the triple gauge
couplings. However we found that the (independent) vari-
ation of gρ and hρ already introduces enough freedom into
the system so that allowing for non-zero values for the
other parameters does not extend the allowed region in
(α4,Mρ) parameter space significantly. Hence, the allowed
region shows up only as tiny bands below the correspond-
ing curves in Fig. 15. The limits for the mass reach given
in Table 16 do therefore not change significantly.

7.3 J = 2 channel

7.3.1 Tensor singlet: f

(i). For conserved isospin, α4 and α5 are non-zero but re-
lated to each other by the constraint

α5 =−
1

4
α4 . (110)

From the fit we get 16π2α4 = 0.64369 for the parabolic
error and −0.65404< 16π2α4 < 0.62154 for the asymmet-
ric errors at 1σ level.
The mass of a singlet tensor resonance is then given by

Mf = v

(
40πff
α4

) 1
4

. (111)

The SU(2)c conserving case is shown in Fig. 19 and
Table 20.

(ii). If we allow for isospin breaking, also α6, α7 and α10
are non-zero but subjected to the two constraints

α7 =−
1

4
α6 , α

2
7 =−

2

3
α5α10

[
or α26 =

8

3
α4α10

]
,

(112)

Fig. 19. Dependence of the resonance mass for the isospin-
conserving tensor singlet case on α4 for different assumed width
to mass ratios (ff = Γf/Mf = 1.0 as full , 0.8 as dashed , 0.6 as
dot-dashed , and 0.3 as dotted line, respectively). The vertical
line represents the 1σ limit for α4



M. Beyer et al.: Determination of new electroweak parameters at the ILC – sensitivity to new physics 379

Table 20. Mass reach for the tensor sing-
let in the SU(2)c conserving case depend-
ing on different resonance widths

ff =
Γf
Mf

1.0 0.8 0.6 0.3

Mf [TeV] 3.29 3.11 2.89 2.43

Fig. 20. Dependence of the resonance mass for the tensor sing-
let with broken isospin on α4 for different assumed width to
mass ratios: ff = Γf/Mf = 1.0 (full), 0.8 (dashed), 0.6 (dot-
dashed), and 0.3 (dotted), respectively. Along the 1σ contour,
the lower and upper limit are shown as upper and lower line,
respectively

Table 21. Mass reach for the tensor sing-
let in the broken isospin case depending on
different resonance widths. Values in the
table are average values along the lower
limit

ff =
Γf
Mf

1.0 0.8 0.6 0.3

Mf [TeV] 3.00 2.84 2.64 2.22

while the former relation (110) still holds. We choose to
take α4 and α6 as independent parameters. Then the mass
of the tensor singlet is given by

Mf = v

(
120πα4ff

2α24+(α4+α6)
2

) 1
4

. (113)

The maximum for the resonance mass is reached when we
set α4 = −α6, leaving us with a one-parameter fit. The

maximal mass is given by Mf,max = v (60πff/α4)
1
4 , lead-

ing to the upper bound in Fig. 20. The mass reach is shown
in Table 21.

7.3.2 Tensor triplet: a

(i). Like the triplet scalar, a tensor triplet as a resonance
can only occur with the help of isospin breaking. Again, we
consider the case ha = ka = 0, so that h

′
a is the only non-

vanishing parameter. In that case, isospin breaking does
not show up experimentally, as onlyα4 =−4α5 is non-zero.
Like in the scalar case, the charged resonance decouples,
while for the mass we get the same relation as in the singlet
case:

Ma0 = v

(
40πfa0

α4

) 1
4

. (114)

The fit is identical to the isospin-conserving case of the ten-
sor singlet (and hence so are the limits).

(ii). In the most general isospin-breaking case, we have five
possibly non-vanishing parameters αi for i = 4, 5, 6, 7, 10
and two independent masses. There are two constraints
among the parameters, namely

α5 =−
1

4
α4 , (115a)

(2α6−α7)
2 =
9

2
α4 (α6+4α7+3α10) . (115b)

Fig. 21. Mass reach for tensor triplet resonances with isospin
breaking for different assumed width to mass ratios, fa =
Γa/Ma = 1.0 (full), 0.8 (dashed), 0.6 (dot-dashed), 0.3 (dotted),
respectively. Top: the charged components, bottom: neutral
component. Upper/lower line: upper/lower limit within the 1σ
contour
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Table 22. Dependence of the mass reach
for tensor triplet resonances on different
resonance widths. For the neutral compon-
ent, the numbers in the table are average
values along the lower limit contour

fa =
Γa
Ma

1.0 0.8 0.6 0.3

Ma0 [TeV] 3.01 2.85 2.65 2.23

Ma± [TeV] 2.81 2.66 2.47 2.08

Solving for the masses of the resonances, yields the
formulas

Ma± = v

(
270πfa±

α6+4α7

) 1
4

, (116a)

Ma0 = v

(
120πα4fa0

2α24+(α4+
8
9α6−

4
9α7)

2

) 1
4

. (116b)

The denominator for the neutral component is minimized
within the 1σ volume on the surface defined by 9α4+
8α6−4α7 = 0. This is equivalent to the condition ha+h′a+
2ka = 0 and maximizes the mass of the neutral state to be-

comeMa0 = v (60πfa0/α4)
1
4 . The dependence of the reson-

ance mass on the αs and mass reach for different width to
mass ratios are shown in Fig. 21 and Table 22, respectively.

7.3.3 Tensor quintet: t

(i). For the tensor quintet, there is the case of strict isospin
conservation, where only α4 and α5 are non-vanishing with
the constraint α5 = 2α4. This degeneracy is lifted as soon
as the isospin-breaking coupling h′ is switched on. Solving
for the mass yields

Mt = v

(
30πft
α4

) 1
4

. (117)

This simple case is shown in the upper plot of Fig. 22 and
the upper line of Table 23. There are four other cases, in
which also only the isospin-conserving parameters α4,5 are
non-zero and experimentally isospin breaking cannot be
measured. This can either be achieved by having h′t �= 0 and
all other parameters vanishing or h′t vanishing. In the sec-
ond case, the relation α5 = 2α4 again holds.

(a) Only the coupling h′t is switched on (which is special in
the sense that at least the SM part couples to a sing-
let invariantly). Here the charged resonances decouple,
and for the neutral one we get

Mt0 = v

(
60πft0

α4

) 1
4

. (118)

(b) h′t = ht = 0, gt =−2kt;
(c) h′t = 0, gt = kt =−

1
2ht;

(d) h′t = 0, gt = 2kt =−
1
2ht.

Fig. 22. Dependence of the resonance mass for the tensor
quintet on α4 for different assumed widths (full line ft0 =
Γt0/Mt0 = 1.0, dashed 0.8, dot-dashed 0.6, dotted 0.3). The ver-
tical line represents the 1σ limit for α4. Top: Isospin-conserving
case and isospin-breaking cases (b), (c), and (d) described in
the text. Bottom: isospin-breaking case (a)

Table 23. Mass reach for the tensor quin-
tet: On the upper line in the SU(2)c con-
serving case as well as for the cases (b), (c),
and (d) described in the text, depending
on different resonance widths. On the lower
line, case (a) where only h′t �= 0

f = Γ
Mt

1.0 0.8 0.6 0.3

Mt [TeV] 4.30 4.06 3.78 3.18

f = Γ
Mt

1.0 0.8 0.6 0.3

Mt [TeV] 3.64 3.44 3.20 2.69

In all the cases (b) to (d), the neutral, charged and doubly-
charged resonances are degenerate in mass, and we get

Mt = v

(
30πft
α4

) 1
4

. (119)

So for the experimental sensitivity, the cases (b) to (d) are
equivalent to the strictly isospin-conserving case, given by
the upper plot of Fig. 22 and the upper line of Table 23.
Case (a) is shown in the lower parts of this figure and table.
Here, from the fit we obtain δα4 = 0.16116 as a parabolic
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error and −0.17387< α4 < 0.15134 as asymmetric ones
at 1σ.

(ii). At first, we consider only gt and h
′
t different from zero.

In that case only α10 vanishes, while we have the two con-
straints

α7 =−
1

4
α6, α

2
6 =
16

81
(2α4−α5)(α4+4α5) . (120)

So, here, experimentally we can measure isospin breaking
in the resonance sector. For the masses of the tensor res-
onances, there is a splitting between the neutral and the
charged ones (tc = t±, t±±):

Mtc = v

(
270πftc

α4+4α5

) 1
4

, (121a)

Mt0 = v

(
270πft0

5α4+2α5

) 1
4

. (121b)

The mass reach in this case is shown in Fig. 23 as well
as Table 24. For the completely general case, all couplings
are non-zero, and the constraint equation is

(2α6−α7)
2 = (2α4−α5) (α4+4α5+2α6+8α7+6α10) .

(122)

Fig. 23.Dependence of the resonance mass for the tensor quin-
tet in the special case ht = kt = 0 for different assumed widths
(full line ft = Γt/Mt = 1.0, dashed 0.8, dot-dashed 0.6, dotted
0.3). Top: charged state, bottom: neutral one

Table 24. Mass reach for the tensor quin-
tet in the ht = kt =0 case depending on dif-
ferent resonance widths.Values in the table
are averaged over the lower limit

f = Γ
Mt

1.0 0.8 0.6 0.3

Mtc [TeV] 6.76 6.39 5.95 5.00

Mt0 [TeV] 4.53 4.28 3.98 3.35

Fig. 24. Dependence of the resonance mass for the tensor
quintet in the full case for different assumed widths (full line
ft = Γt/Mt = 1.0, dashed 0.8, dot-dashed 0.6, dotted 0.3, re-
spectively). On the upper line, the doubly charged case is
shown, the charged one in themiddle, while the neutral state is
in the lower line
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Table 25. Mass reach for the tensor quin-
tet in the full case depending on differ-
ent resonance widths. The values given in
the table are averaged over the lower limit
curve

f = Γ
Mt

1.0 0.8 0.6 0.3

Mt±± [TeV] 5.17 4.89 4.55 3.83

Mt± [TeV] 3.64 3.44 3.20 2.69

Mt0 [TeV] 5.84 5.52 5.14 4.32

The masses for the tensor quintet are (we use the abbrevi-
ations ξij = αi+4αj, ζij = 2αi−αj)

Mt±± = v

(
270πft±±

ξ45

) 1
4

, (123a)

Mt± = v

(
270πft±

ξ45+ ξ67

) 1
4

, (123b)

Mt0 = v

(
810πζ45ft0[√

ξ45ζ45−2ζ45
]2
+2 [ζ45+ ζ67]

2

)1
4

= v

(
810πft0[√

ξ45−2
√
ζ45
]2
+2
[√
ζ45+

√
χ
]2
)1
4

.

(123c)

Here, we used the abbreviation χ= ξ45+2ξ67+6α10. For
the neutral component, the first formula is better suited
for the fit, while the limit to the isospin-conserving case is
easily visible in the second one as well as the limit to the
special case above, with ξ67→ 0 for only gt and h′t being
non-zero. The results for the completely general case are
shown in Fig. 24 and Table 25.

8 Summary

At an ILC with high energy (1 TeV) and luminosity
(1000 fb−1) and the possibility for both electron and
positron polarization, precise measurements of weak-boson
interactions will be feasible. In this work we have con-
centrated on quartic weak-boson couplings that enter in
six-fermion processes. Including known results for weak-
boson pair production and oblique corrections, we have
determined the possible impact on our knowledge about
high-energy weak-boson scattering amplitudes. Our nu-
merical results are presented in terms of the usual set of
anomalous couplings in the chiral-Lagrangian framework.
For each spin-isospin channel, they are conveniently re-
expressed in terms of the maximal resonance mass that,
under the most favorable conditions, the measurement can
be sensitive to.
On the experimental side, the present study completes

and supersedes previous studies of weak-boson scattering
and triple-boson production in e+e− collisions. For weak-
boson scattering processes, we have analyzed all acces-

sible channels using an unweighted event generator with
complete six-fermion matrix elements, parton shower and
hadronization, and fast detector simulation. The analysis
uses standard cut-based experimental techniques. The pa-
rameters are determined in a global multi-dimensional fit
without implicit or explicit assumptions of theoretical rela-
tions among them.
Triple weak-boson production provides independent in-

formation on the parameters of interest. While our results
indicate that the ultimate sensitivity is not as good as for
the weak-boson scattering processes, it serves as an im-
portant cross-check and should be included in a global fit
of ILC data. More details on this class of processes will be
published elsewhere [115].
In Tables 26 and 27 we combine our results for the

physics sensitivity for all spin/isospin channels. Table 26
assumes SU(2)c conservation, so the ∆ρ parameter auto-
matically vanishes. In this case, only channels with I+J
even couple to weak-boson pairs. Table 27 shows the results
without this constraint. In each case, a single resonance
with maximal coupling (i.e., Γ =M) was assumed to be
present. In a real situation, the particular structure of the
parameter dependence can be used to disentangle multiple
resonances.
Some important properties of the relation of resonances

to anomalous couplings are worth mentioning. First of all,
we have to distinguish resonances that (in our operator ba-

Table 26. Accessible scale Λ in
TeV for all possible spin/isospin
channels. The results are derived
from the analysis of vector-boson
scattering processes at the ILC, as-
suming a single resonance with op-
timal properties. Custodial SU(2)
symmetry is assumed to hold

Spin I = 0 I = 1 I = 2

0 1.55 − 1.95
1 − 2.49 −
2 3.29 − 4.30

Table 27. Accessible scale Λ in
TeV for all possible spin/isospin
channels. The results are derived
from the analysis of vector–boson
scattering processes at the ILC,
assuming a single resonance with
optimal properties. No constraints
beyond the SM symmetries are as-
sumed

Spin I = 0 I = 1 I = 2

0 1.39 1.55 1.95
1 1.74 2.67 −
2 3.00 3.01 5.84
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sis) couple to fermions from those that do not. If sizable
fermion couplings are present, some anomalous couplings
scale with 1/M2, where M is the resonance mass. Obvi-
ously, these include four-fermion contact terms, which are
thus potentially sensitive to new physics up to rather high
scales. The other class of operators with 1/M2 scaling are
mixed fermion–boson contact terms that contribute, e.g.,
to vector-boson pair production. In any fixed operator ba-
sis, these operators are not related to the triple gauge in-
teractions that are usually considered. However, in studies
that deal with specific models (e.g., minimal technicolor),
they are implicitly present. This accounts for the good
physics reach of the ILC as it has been discovered in studies
of weak-boson pair production.
In this work, we have determined the amount of in-

formation that can possibly be gained on top of the an-
alysis of fermionic couplings, or otherwise if such cou-
plings are small or absent. In that case, the only oper-
ator with a physical 1/M2 scaling corresponds to the ρ
parameter, associated to custodial-SU(2) violation. Apart
from that, all 1/M2 effects in bosonic interactions can be
absorbed into unobservable redefinitions of the SM pa-
rameters. Therefore, the shifts due to heavy resonances
in oblique corrections, triple gauge couplings, and quar-
tic gauge couplings all scale with 1/M4. In particular, all
corrections to triple gauge couplings (g, κ, λ) scale in the
same way, although the operators have formally different
dimension.
Taking these considerations into account, we find lim-

its for the sensitivity of the ILC in the 1 to 3 TeV range,
where the best reach corresponds to the highest-spin chan-
nel. These limits are not as striking as possible limits from
contact interactions, but they agree well with the expected
direct-search limits for resonances at the LHC. Performing
global fits of all electroweak parameters, analogous to LEP
analyses, and combining data from both colliders will be
important for disentangling the contributions. Significant
knowledge about the mechanism of electroweak symme-
try breaking can thus be gained even in ‘worst-case’ sce-
narios that do not lead to striking new-physics signatures
at all.
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Appendix A: Chiral parameters and
anomalous couplings

In this section, we list the formulas that relate the oper-
ators of the chiral Lagrangian (see Sect. 2) to the anoma-
lous couplings of vector bosons in the physical basis of
Aµ, Zµ, W

±
µ . While standard parameterizations exist

for the oblique corrections and for the triple gauge cou-
plings (TGC), this is not the case for quartic anomalous
couplings.

A.1 Oblique corrections

New physics that does not couple to light fermions can be
parameterized in terms of S, T, U . The relations are

∆S =−16πα1 , ∆T = 2β1/αQED , ∆U =−16πα8 .
(A.1)

The oblique corrections are needed for the proper renor-
malization of the SM vertices. First, we have to specify
our definition of the weak mixing angle. It is customary to
adopt theGF/α/MZ scheme. In this scheme, the weakmix-
ing angle is defined by

sWcW =
e

2MZ
(
√
2GF)

−1/2 . (A.2)

Furthermore, the oblique corrections renormalize the wave
functions of the vector bosons and thus affect the definition
of the gauge couplings g and g′ in terms of e and sW, cW.
A simple recipe of including the oblique corrections to

the trilinear and quartic gauge couplings is the following:

(i) Expand the SM Lagrangian in terms of physical fields
according to

gW 3 = eA+ e
cW

sW
(1+ δZ)Z ,

gW± =
e

sW

(
1+ c2WδZ −

g2

2
α8

)
W± , (A.3)

where

δZ =
β1+ g

′2α1

c2W− s
2
W

, (A.4)

and
(ii) switch to the GF/α/MZ scheme by the replacements

sW→ sW

(
1−

c2W
c2W− s

2
W

β1−
e2

2s2W (c
2
W− s

2
W)
α1

)

(A.5)

cW→ cW

(
1+

s2W
c2W− s

2
W

β1+
e2

2c2W (c
2
W− s

2
W)
α1

)
.

(A.6)

A.2 Triple gauge couplings

We define a generic C- and CP -even triple gauge vertex in
the standard way by

LTGC = ie

[
gγ1Aµ

(
W−ν W

+µν −W+ν W
−µν
)

+κγW−µ W
+
ν A

µν +
λγ

M2W
W−µ

νW+νρA
ρµ

]

+ ie
cW

sW

[
gZ1 Zµ

(
W−ν W

+µν −W+ν W
−µν
)

+κZW−µ W
+
ν Z

µν +
λZ

M2W
W−µ

νW+νρZ
ρµ

]
.

(A.7)
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The SM values are

gγ,Z1 = κγ,Z = 1 and λγ,Z = 0 . (A.8)

The triple gauge couplings are expressed in terms of the α
parameters as

∆gγ1 = 0 ,

∆κγ = g2(α2−α1)+ g
2α3+ g

2(α9−α8) , (A.9)

∆gZ1 = δZ +
g2

c2W
α3 ,

∆κZ = δZ − g
′2(α2−α1)+ g

2α3+ g
2(α9−α8)

(A.10)

and

λγ =−
g2

2

(
αλ1 +α

λ
2

)
, λZ =−

g2

2

(
αλ1 −

s2W
c2W
αλ2

)
,

(A.11)

where δZ is the oblique correction defined above.
This can be inverted to yield

α2−α1 =
c2W
g2
(
∆κγ −∆κZ+ δZ

)
, (A.12)

α3 =
c2W
g2
(
∆gZ1 − δZ

)
, (A.13)

α9−α8 =
s2W
g2
∆κγ+

c2W
g2
(
∆κZ −∆gZ1

)
, (A.14)

αλ1 =−
2

g2
(
s2Wλ

γ+ c2Wλ
Z
)
, (A.15)

αλ2 =−
2

g2
c2W
(
λγ−λZ

)
. (A.16)

A.3 Quartic gauge couplings

We define the quartic gauge couplings analogous to the
TGC:

LQGC = e
2

[
gγγ1 A

µAνW−µ W
+
ν − g

γγ
2 A

µAµW
−νW+ν

]

+ e2
cW

sW

[
gγZ1 A

µZν
(
W−µ W

+
ν +W

+
µ W

−
ν

)

−2gγZ2 A
µZµW

−νW+ν

]

+ e2
c2W
s2W

[
gZZ1 Z

µZνW−µ W
+
ν

− gZZ2 Z
µZµW

−νW+ν

]

+
e2

2s2W

[
gWW1 W−µW+νW−µ W

+
ν

− gWW2
(
W−µW+µ

)2]
+

e2

4s2Wc
4
W

hZZ (ZµZµ)
2
.

(A.17)

The SM values are

gV V
′

1 = gV V
′

2 = 1 (V V ′ = γγ, γZ, ZZ,WW ) ,

hZZ = 0 . (A.18)

In terms of the α parameters, the deviations from the SM
values are

∆gγγ1 =∆g
γγ
2 = 0 =∆gγ1 , (A.19)

∆gγZ1 =∆g
γZ
2 = δZ +

g2

c2W
α3 =∆gZ1 , (A.20)

∆gZZ1 = 2∆gγZ1 +
g2

c4W
(α4+α6) , (A.21)

∆gZZ2 = 2∆gγZ1 −
g2

c4W
(α5+α7) , (A.22)

∆gWW1 = 2c2W∆g
γZ
1 +2g

2(α9−α8)+ g
2α4 , (A.23)

∆gWW2 = 2c2W∆g
γZ
1 +2g

2(α9−α8)− g
2 (α4+2α5) ,

(A.24)

hZZ = g2 [α4+α5+2 (α6+α7+α10)] . (A.25)

There are also λ-type couplings which contain two field
strength tensors of different charge,

LλQGC =
∑

V,V ′=γ,Z

gV gV ′
λV V

′

M2W

[
(V ′νW

−
ρ −V

′
ρW

−
ν )W

+ρ
µ

+
(
V ′νW

+
ρ −V

′
ρW

+
ν

)
W−ρµ

]
V µν

+ g2
λWW

M2W
(W−µ W

+
ν −W

+
µ W

−
ν )W

−ν
ρW

+ρµ ,

(A.26)

with

gγ = e , gZ = ecW/sW , (A.27)

as well as couplings which contain two field strength ten-
sors of equal charge that we do not need. Similarly, we
do not consider quartic couplings with four field strength
tensors. The SM values of λV V

′
are zero. The quartic λ cou-

plings are related to the αλ parameters by

λγγ =−
g2

2

(
αλ1 +α

λ
2

)
= λγ , (A.28)

λZγ =−
g2

2

(
αλ1 −

s2W
c2W
αλ2

)
= λZ , (A.29)

λγZ = λγγ−
g2

2c2W

(
αλ3 +

1

2
αλ4

)
, (A.30)

λZZ = λZγ −
g2

2c2W

(
αλ3 −

s2W
2c2W
αλ4

)
, (A.31)

λWW =−
g2

2

(
αλ1 +α

λ
3 +α

λ
5

)
. (A.32)

Note that λγγ and λZγ are determined by the trilinear cou-
plings, while the other three are independent. The reason



M. Beyer et al.: Determination of new electroweak parameters at the ILC – sensitivity to new physics 385

is that all couplings that involve the photon field in terms
of the potentialAµ directly (not via the field strengthAµν)
are connected by gauge invariance. The same holds for the
gγγ and gγZ couplings; see above.

Appendix B: Chiral Lagrangian building
blocks

We define the vector field

V =Σ(DΣ)† =−(DΣ)Σ† (B.1)

and the projection field

T=Στ3Σ† . (B.2)

Both are in the adjoint representation of SU(2)L, and both
are linear combinations of Pauli matrices (this is not obvi-
ous forV), so

tr {V}= 0 , tr {T}= 0 . (B.3)

Their covariant derivatives are

DµVν = ∂µVν +ig[Wµ,Vν ] , DµT= [T,Vµ] .
(B.4)

Note thatV is antihermitian while T is hermitian:

V† =−V , T† =T . (B.5)

B.1 Unitary gauge

In unitary gauge, these fields reduce to

V⇒−igW+ig′
(
B
τ3

2

)

=−
ig

2

[
√
2(W+τ++W−τ−)+

1

cW
Zτ3
]
,

(B.6)

T⇒ τ3 , (B.7)

and we get

tr {TVµ}=−
ig

cW
Zµ (B.8)

and thus

tr {VµVν}=−
g2

2

(
W+µ W

−
ν +W

−
µ W

+
ν

+
1

c2W
ZµZν

)
(B.9)

tr {TVµ} tr {TVν}=−
g2

c2W
(ZµZν) . (B.10)

Furthermore, we expand the field strengths in the charge
eigenbasis to obtain

Wµν =
1
√
2

[
W+µν + ie

(
AµW

+
ν −AνW

+
µ

)

+ igcW
(
ZµW

+
ν −ZνW

+
µ

)]
τ+

+
1
√
2

[
W−µν − ie

(
AµW

−
ν −AνW

−
µ

)

− igcW
(
ZµW

−
ν −ZνW

−
µ

)]
τ−

+
1

2

[
sWAµν + cWZµν

+ ig
(
W+µ W

−
ν −W

−
µ W

+
ν

)]
τ3 , (B.11)

Bµν =
1

2
[cWAµν − sWZµν ] τ

3 , (B.12)

[Vµ,Vν ] =−g
2

[
1

cW
√
2

(
ZµW

+
ν −W

+
µ Zν
)
τ+

−
1

cW
√
2

(
ZµW

−
ν −W

−
µ Zν
)
τ−

+
1

2

(
W+µ W

−
ν −W

−
µ W

+
ν

)
τ3
]
, (B.13)

tr {TWµν}= sWAµν + cWZµν

+ ig
(
W+µ W

−
ν −W

−
µ W

+
ν

)
,

(B.14)

tr {T[Vµ,Vν ]}=−g
2
(
W+µ W

−
ν −W

−
µ W

+
ν

)
.

(B.15)

B.2 Gaugeless limit

Conversely, in the gaugeless limit the expansions in terms
of Goldstone fields are

V⇒
i

v

(
∂wk+

1

v
εijkwi∂wj

)
τk+O(v−3) ,

(B.16)

T⇒ τ3+2
√
2
i

v

(
w+τ+−w−τ−

)
+O(v−2) .

(B.17)

Expressing both in terms of charge eigenstates, we derive
the expansions

V =
i

v

{
√
2

[
∂w++

i

v

(
w+∂z− z∂w+

)]
τ+

+
√
2

[
∂w−−

i

v

(
w−∂z− z∂w−

)]
τ−
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+

[
∂z−

i

v

(
w+∂w−−w−∂w+

)]
τ3

}
,

+O(v−3) (B.18)

tr {TV}=
2i

v

[
∂z+

i

v

(
w+∂w−−w−∂w+

)]
+O(v−3) ,

(B.19)

and thus

tr {VµVν}=−
2

v2
(
∂µw

+∂νw
−+∂µw

−∂νw
+

+∂µz∂νz)+O(v
−3) , (B.20)

tr {TVµ} tr {TVν}=−
4

v2
(∂µz∂νz)+O(v

−3) . (B.21)

B.3 Useful relations

The following relations can be derived using the definitions
and relations above:

tr
{
[Vµ,Vν ]

2
}
= 2 (tr {VµVν})

2−2 (tr {VµV
µ})2

(B.22)

(tr {T[Vµ,Vν ]})
2 = 4 (tr {VµVν})

2−4 (tr {VµV
µ})2

−4 tr{VµVν} tr {TV
µ} tr {TVν}

+4 tr{VµV
µ} tr {TVν} tr {TV

ν} .
(B.23)

Furthermore,

tr {[Vµ,Vν ][T,V
µ]}=−2 tr{VµVν} tr {TV

µ}

+2 tr{VµV
µ} tr {TVν}

(B.24)

tr {[T,Vµ][T,Vν ]}=−4 tr{VµVν}

+2 tr{TVµ} tr {TVν}
(B.25)

and

tr {Wµν [T,V
µ]} tr {TVν}=

− tr {Wµν [V
µ,Vν ]}+ 12 tr {TWµν} tr {T[V

µ,Vν ]} .
(B.26)

For field strength tensors we have

DµVν −DνVµ =−[Vµ,Vν ]− igWµν+ ig
′Bµν , (B.27)

∂µ tr {TVν}−∂ν tr {TVµ}

= tr {T[Vµ,Vν ]}− ig tr {TWµν}+ ig
′Bµν ,

(B.28)

Dµ(T tr {TVν})−Dν(T tr {TVµ})

= [T,Vµ] tr {TVν}− [T,Vν ] tr {TVµ}

+T tr {T[Vµ,Vν ]}− igT tr {TWµν}

+2ig′Bµν . (B.29)

This is easy to see in unitary gauge:

[T,Vµ] tr {TVν}− [T,Vν ] tr {TVµ}

=−2[Vµ,Vν ]+T tr{T[Vµ,Vν ]} . (B.30)
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